Metamath Proof Explorer


Theorem omndadd

Description: In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses omndadd.0 B=BaseM
omndadd.1 ˙=M
omndadd.2 +˙=+M
Assertion omndadd MoMndXBYBZBX˙YX+˙Z˙Y+˙Z

Proof

Step Hyp Ref Expression
1 omndadd.0 B=BaseM
2 omndadd.1 ˙=M
3 omndadd.2 +˙=+M
4 1 3 2 isomnd MoMndMMndMTosetaBbBcBa˙ba+˙c˙b+˙c
5 4 simp3bi MoMndaBbBcBa˙ba+˙c˙b+˙c
6 breq1 a=Xa˙bX˙b
7 oveq1 a=Xa+˙c=X+˙c
8 7 breq1d a=Xa+˙c˙b+˙cX+˙c˙b+˙c
9 6 8 imbi12d a=Xa˙ba+˙c˙b+˙cX˙bX+˙c˙b+˙c
10 breq2 b=YX˙bX˙Y
11 oveq1 b=Yb+˙c=Y+˙c
12 11 breq2d b=YX+˙c˙b+˙cX+˙c˙Y+˙c
13 10 12 imbi12d b=YX˙bX+˙c˙b+˙cX˙YX+˙c˙Y+˙c
14 oveq2 c=ZX+˙c=X+˙Z
15 oveq2 c=ZY+˙c=Y+˙Z
16 14 15 breq12d c=ZX+˙c˙Y+˙cX+˙Z˙Y+˙Z
17 16 imbi2d c=ZX˙YX+˙c˙Y+˙cX˙YX+˙Z˙Y+˙Z
18 9 13 17 rspc3v XBYBZBaBbBcBa˙ba+˙c˙b+˙cX˙YX+˙Z˙Y+˙Z
19 5 18 mpan9 MoMndXBYBZBX˙YX+˙Z˙Y+˙Z
20 19 3impia MoMndXBYBZBX˙YX+˙Z˙Y+˙Z