Metamath Proof Explorer


Theorem onintunirab

Description: The intersection of a non-empty class of ordinals is the union of every ordinal less-than-or-equal to every element of that class. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion onintunirab AOnAA=xOn|yAxy

Proof

Step Hyp Ref Expression
1 simp3 AOnAxOnyAxyyAxy
2 ssint xAyAxy
3 1 2 sylibr AOnAxOnyAxyxA
4 simp2 AOnAxOnyAxyxOn
5 oninton AOnAAOn
6 5 3ad2ant1 AOnAxOnyAxyAOn
7 onsssuc xOnAOnxAxsucA
8 4 6 7 syl2anc AOnAxOnyAxyxAxsucA
9 3 8 mpbid AOnAxOnyAxyxsucA
10 9 rabssdv AOnAxOn|yAxysucA
11 ssrab2 xOn|yAxyOn
12 11 a1i AOnAxOn|yAxyOn
13 eloni AOnOrdA
14 5 13 syl AOnAOrdA
15 ordunisssuc xOn|yAxyOnOrdAxOn|yAxyAxOn|yAxysucA
16 12 14 15 syl2anc AOnAxOn|yAxyAxOn|yAxysucA
17 10 16 mpbird AOnAxOn|yAxyA
18 sseq1 x=AxyAy
19 18 ralbidv x=AyAxyyAAy
20 intss1 yAAy
21 20 rgen yAAy
22 21 a1i AOnAyAAy
23 19 5 22 elrabd AOnAAxOn|yAxy
24 unissel xOn|yAxyAAxOn|yAxyxOn|yAxy=A
25 17 23 24 syl2anc AOnAxOn|yAxy=A
26 25 eqcomd AOnAA=xOn|yAxy