Metamath Proof Explorer


Theorem opncldf1

Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses opncldf.1 X=J
opncldf.2 F=uJXu
Assertion opncldf1 JTopF:J1-1 ontoClsdJF-1=xClsdJXx

Proof

Step Hyp Ref Expression
1 opncldf.1 X=J
2 opncldf.2 F=uJXu
3 1 opncld JTopuJXuClsdJ
4 1 cldopn xClsdJXxJ
5 4 adantl JTopxClsdJXxJ
6 1 cldss xClsdJxX
7 6 ad2antll JTopuJxClsdJxX
8 dfss4 xXXXx=x
9 7 8 sylib JTopuJxClsdJXXx=x
10 9 eqcomd JTopuJxClsdJx=XXx
11 difeq2 u=XxXu=XXx
12 11 eqeq2d u=Xxx=Xux=XXx
13 10 12 syl5ibrcom JTopuJxClsdJu=Xxx=Xu
14 1 eltopss JTopuJuX
15 14 adantrr JTopuJxClsdJuX
16 dfss4 uXXXu=u
17 15 16 sylib JTopuJxClsdJXXu=u
18 17 eqcomd JTopuJxClsdJu=XXu
19 difeq2 x=XuXx=XXu
20 19 eqeq2d x=Xuu=Xxu=XXu
21 18 20 syl5ibrcom JTopuJxClsdJx=Xuu=Xx
22 13 21 impbid JTopuJxClsdJu=Xxx=Xu
23 2 3 5 22 f1ocnv2d JTopF:J1-1 ontoClsdJF-1=xClsdJXx