Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opncldf.1 | |
|
opncldf.2 | |
||
Assertion | opncldf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opncldf.1 | |
|
2 | opncldf.2 | |
|
3 | 1 | opncld | |
4 | 1 | cldopn | |
5 | 4 | adantl | |
6 | 1 | cldss | |
7 | 6 | ad2antll | |
8 | dfss4 | |
|
9 | 7 8 | sylib | |
10 | 9 | eqcomd | |
11 | difeq2 | |
|
12 | 11 | eqeq2d | |
13 | 10 12 | syl5ibrcom | |
14 | 1 | eltopss | |
15 | 14 | adantrr | |
16 | dfss4 | |
|
17 | 15 16 | sylib | |
18 | 17 | eqcomd | |
19 | difeq2 | |
|
20 | 19 | eqeq2d | |
21 | 18 20 | syl5ibrcom | |
22 | 13 21 | impbid | |
23 | 2 3 5 22 | f1ocnv2d | |