Metamath Proof Explorer


Theorem opncldf1

Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses opncldf.1 X = J
opncldf.2 F = u J X u
Assertion opncldf1 J Top F : J 1-1 onto Clsd J F -1 = x Clsd J X x

Proof

Step Hyp Ref Expression
1 opncldf.1 X = J
2 opncldf.2 F = u J X u
3 1 opncld J Top u J X u Clsd J
4 1 cldopn x Clsd J X x J
5 4 adantl J Top x Clsd J X x J
6 1 cldss x Clsd J x X
7 6 ad2antll J Top u J x Clsd J x X
8 dfss4 x X X X x = x
9 7 8 sylib J Top u J x Clsd J X X x = x
10 9 eqcomd J Top u J x Clsd J x = X X x
11 difeq2 u = X x X u = X X x
12 11 eqeq2d u = X x x = X u x = X X x
13 10 12 syl5ibrcom J Top u J x Clsd J u = X x x = X u
14 1 eltopss J Top u J u X
15 14 adantrr J Top u J x Clsd J u X
16 dfss4 u X X X u = u
17 15 16 sylib J Top u J x Clsd J X X u = u
18 17 eqcomd J Top u J x Clsd J u = X X u
19 difeq2 x = X u X x = X X u
20 19 eqeq2d x = X u u = X x u = X X u
21 18 20 syl5ibrcom J Top u J x Clsd J x = X u u = X x
22 13 21 impbid J Top u J x Clsd J u = X x x = X u
23 2 3 5 22 f1ocnv2d J Top F : J 1-1 onto Clsd J F -1 = x Clsd J X x