Metamath Proof Explorer


Theorem oppgsubg

Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis oppggic.o O=opp𝑔G
Assertion oppgsubg SubGrpG=SubGrpO

Proof

Step Hyp Ref Expression
1 oppggic.o O=opp𝑔G
2 subgrcl xSubGrpGGGrp
3 subgrcl xSubGrpOOGrp
4 1 oppggrpb GGrpOGrp
5 3 4 sylibr xSubGrpOGGrp
6 1 oppgsubm SubMndG=SubMndO
7 6 eleq2i xSubMndGxSubMndO
8 7 a1i GGrpxSubMndGxSubMndO
9 eqid invgG=invgG
10 1 9 oppginv GGrpinvgG=invgO
11 10 fveq1d GGrpinvgGy=invgOy
12 11 eleq1d GGrpinvgGyxinvgOyx
13 12 ralbidv GGrpyxinvgGyxyxinvgOyx
14 8 13 anbi12d GGrpxSubMndGyxinvgGyxxSubMndOyxinvgOyx
15 9 issubg3 GGrpxSubGrpGxSubMndGyxinvgGyx
16 eqid invgO=invgO
17 16 issubg3 OGrpxSubGrpOxSubMndOyxinvgOyx
18 4 17 sylbi GGrpxSubGrpOxSubMndOyxinvgOyx
19 14 15 18 3bitr4d GGrpxSubGrpGxSubGrpO
20 2 5 19 pm5.21nii xSubGrpGxSubGrpO
21 20 eqriv SubGrpG=SubGrpO