Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oppggic.o | |
|
Assertion | oppgsubg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppggic.o | |
|
2 | subgrcl | |
|
3 | subgrcl | |
|
4 | 1 | oppggrpb | |
5 | 3 4 | sylibr | |
6 | 1 | oppgsubm | |
7 | 6 | eleq2i | |
8 | 7 | a1i | |
9 | eqid | |
|
10 | 1 9 | oppginv | |
11 | 10 | fveq1d | |
12 | 11 | eleq1d | |
13 | 12 | ralbidv | |
14 | 8 13 | anbi12d | |
15 | 9 | issubg3 | |
16 | eqid | |
|
17 | 16 | issubg3 | |
18 | 4 17 | sylbi | |
19 | 14 15 18 | 3bitr4d | |
20 | 2 5 19 | pm5.21nii | |
21 | 20 | eqriv | |