Metamath Proof Explorer


Theorem oppgsubg

Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis oppggic.o O = opp 𝑔 G
Assertion oppgsubg SubGrp G = SubGrp O

Proof

Step Hyp Ref Expression
1 oppggic.o O = opp 𝑔 G
2 subgrcl x SubGrp G G Grp
3 subgrcl x SubGrp O O Grp
4 1 oppggrpb G Grp O Grp
5 3 4 sylibr x SubGrp O G Grp
6 1 oppgsubm SubMnd G = SubMnd O
7 6 eleq2i x SubMnd G x SubMnd O
8 7 a1i G Grp x SubMnd G x SubMnd O
9 eqid inv g G = inv g G
10 1 9 oppginv G Grp inv g G = inv g O
11 10 fveq1d G Grp inv g G y = inv g O y
12 11 eleq1d G Grp inv g G y x inv g O y x
13 12 ralbidv G Grp y x inv g G y x y x inv g O y x
14 8 13 anbi12d G Grp x SubMnd G y x inv g G y x x SubMnd O y x inv g O y x
15 9 issubg3 G Grp x SubGrp G x SubMnd G y x inv g G y x
16 eqid inv g O = inv g O
17 16 issubg3 O Grp x SubGrp O x SubMnd O y x inv g O y x
18 4 17 sylbi G Grp x SubGrp O x SubMnd O y x inv g O y x
19 14 15 18 3bitr4d G Grp x SubGrp G x SubGrp O
20 2 5 19 pm5.21nii x SubGrp G x SubGrp O
21 20 eqriv SubGrp G = SubGrp O