| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppreqg.o |
|
| 2 |
|
oppr2idl.2 |
|
| 3 |
|
opprmxidl.3 |
|
| 4 |
1
|
opprring |
|
| 5 |
|
eqid |
|
| 6 |
5
|
opprring |
|
| 7 |
2 4 6
|
3syl |
|
| 8 |
|
eqid |
|
| 9 |
8
|
mxidlidl |
|
| 10 |
2 3 9
|
syl2anc |
|
| 11 |
1 2
|
opprlidlabs |
|
| 12 |
10 11
|
eleqtrd |
|
| 13 |
8
|
mxidlnr |
|
| 14 |
2 3 13
|
syl2anc |
|
| 15 |
2
|
ad2antrr |
|
| 16 |
3
|
ad2antrr |
|
| 17 |
|
simplr |
|
| 18 |
11
|
ad2antrr |
|
| 19 |
17 18
|
eleqtrrd |
|
| 20 |
|
simpr |
|
| 21 |
8
|
mxidlmax |
|
| 22 |
15 16 19 20 21
|
syl22anc |
|
| 23 |
22
|
ex |
|
| 24 |
23
|
ralrimiva |
|
| 25 |
1 8
|
opprbas |
|
| 26 |
5 25
|
opprbas |
|
| 27 |
26
|
ismxidl |
|
| 28 |
27
|
biimpar |
|
| 29 |
7 12 14 24 28
|
syl13anc |
|