Metamath Proof Explorer


Theorem opprmxidlabs

Description: The maximal ideal of the opposite ring's opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses oppreqg.o O = opp r R
oppr2idl.2 φ R Ring
opprmxidl.3 φ M MaxIdeal R
Assertion opprmxidlabs φ M MaxIdeal opp r O

Proof

Step Hyp Ref Expression
1 oppreqg.o O = opp r R
2 oppr2idl.2 φ R Ring
3 opprmxidl.3 φ M MaxIdeal R
4 1 opprring R Ring O Ring
5 eqid opp r O = opp r O
6 5 opprring O Ring opp r O Ring
7 2 4 6 3syl φ opp r O Ring
8 eqid Base R = Base R
9 8 mxidlidl R Ring M MaxIdeal R M LIdeal R
10 2 3 9 syl2anc φ M LIdeal R
11 1 2 opprlidlabs φ LIdeal R = LIdeal opp r O
12 10 11 eleqtrd φ M LIdeal opp r O
13 8 mxidlnr R Ring M MaxIdeal R M Base R
14 2 3 13 syl2anc φ M Base R
15 2 ad2antrr φ j LIdeal opp r O M j R Ring
16 3 ad2antrr φ j LIdeal opp r O M j M MaxIdeal R
17 simplr φ j LIdeal opp r O M j j LIdeal opp r O
18 11 ad2antrr φ j LIdeal opp r O M j LIdeal R = LIdeal opp r O
19 17 18 eleqtrrd φ j LIdeal opp r O M j j LIdeal R
20 simpr φ j LIdeal opp r O M j M j
21 8 mxidlmax R Ring M MaxIdeal R j LIdeal R M j j = M j = Base R
22 15 16 19 20 21 syl22anc φ j LIdeal opp r O M j j = M j = Base R
23 22 ex φ j LIdeal opp r O M j j = M j = Base R
24 23 ralrimiva φ j LIdeal opp r O M j j = M j = Base R
25 1 8 opprbas Base R = Base O
26 5 25 opprbas Base R = Base opp r O
27 26 ismxidl opp r O Ring M MaxIdeal opp r O M LIdeal opp r O M Base R j LIdeal opp r O M j j = M j = Base R
28 27 biimpar opp r O Ring M LIdeal opp r O M Base R j LIdeal opp r O M j j = M j = Base R M MaxIdeal opp r O
29 7 12 14 24 28 syl13anc φ M MaxIdeal opp r O