| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppreqg.o |  | 
						
							| 2 |  | oppr2idl.2 |  | 
						
							| 3 |  | opprmxidl.3 |  | 
						
							| 4 | 1 | opprring |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 5 | opprring |  | 
						
							| 7 | 2 4 6 | 3syl |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 8 | mxidlidl |  | 
						
							| 10 | 2 3 9 | syl2anc |  | 
						
							| 11 | 1 2 | opprlidlabs |  | 
						
							| 12 | 10 11 | eleqtrd |  | 
						
							| 13 | 8 | mxidlnr |  | 
						
							| 14 | 2 3 13 | syl2anc |  | 
						
							| 15 | 2 | ad2antrr |  | 
						
							| 16 | 3 | ad2antrr |  | 
						
							| 17 |  | simplr |  | 
						
							| 18 | 11 | ad2antrr |  | 
						
							| 19 | 17 18 | eleqtrrd |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 8 | mxidlmax |  | 
						
							| 22 | 15 16 19 20 21 | syl22anc |  | 
						
							| 23 | 22 | ex |  | 
						
							| 24 | 23 | ralrimiva |  | 
						
							| 25 | 1 8 | opprbas |  | 
						
							| 26 | 5 25 | opprbas |  | 
						
							| 27 | 26 | ismxidl |  | 
						
							| 28 | 27 | biimpar |  | 
						
							| 29 | 7 12 14 24 28 | syl13anc |  |