Metamath Proof Explorer


Theorem opprrng

Description: An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypothesis opprrng.o O=opprR
Assertion opprrng RRngORng

Proof

Step Hyp Ref Expression
1 opprrng.o O=opprR
2 eqid BaseR=BaseR
3 1 2 opprbas BaseR=BaseO
4 3 a1i RRngBaseR=BaseO
5 eqid +R=+R
6 1 5 oppradd +R=+O
7 6 a1i RRng+R=+O
8 eqidd RRngO=O
9 rngabl RRngRAbel
10 3 6 ablprop RAbelOAbel
11 9 10 sylib RRngOAbel
12 eqid R=R
13 eqid O=O
14 2 12 1 13 opprmul xOy=yRx
15 2 12 rngcl RRngyBaseRxBaseRyRxBaseR
16 15 3com23 RRngxBaseRyBaseRyRxBaseR
17 14 16 eqeltrid RRngxBaseRyBaseRxOyBaseR
18 simpl RRngxBaseRyBaseRzBaseRRRng
19 simpr3 RRngxBaseRyBaseRzBaseRzBaseR
20 simpr2 RRngxBaseRyBaseRzBaseRyBaseR
21 simpr1 RRngxBaseRyBaseRzBaseRxBaseR
22 2 12 rngass RRngzBaseRyBaseRxBaseRzRyRx=zRyRx
23 18 19 20 21 22 syl13anc RRngxBaseRyBaseRzBaseRzRyRx=zRyRx
24 23 eqcomd RRngxBaseRyBaseRzBaseRzRyRx=zRyRx
25 14 oveq1i xOyOz=yRxOz
26 2 12 1 13 opprmul yRxOz=zRyRx
27 25 26 eqtri xOyOz=zRyRx
28 2 12 1 13 opprmul yOz=zRy
29 28 oveq2i xOyOz=xOzRy
30 2 12 1 13 opprmul xOzRy=zRyRx
31 29 30 eqtri xOyOz=zRyRx
32 24 27 31 3eqtr4g RRngxBaseRyBaseRzBaseRxOyOz=xOyOz
33 2 5 12 rngdir RRngyBaseRzBaseRxBaseRy+RzRx=yRx+RzRx
34 18 20 19 21 33 syl13anc RRngxBaseRyBaseRzBaseRy+RzRx=yRx+RzRx
35 2 12 1 13 opprmul xOy+Rz=y+RzRx
36 2 12 1 13 opprmul xOz=zRx
37 14 36 oveq12i xOy+RxOz=yRx+RzRx
38 34 35 37 3eqtr4g RRngxBaseRyBaseRzBaseRxOy+Rz=xOy+RxOz
39 2 5 12 rngdi RRngzBaseRxBaseRyBaseRzRx+Ry=zRx+RzRy
40 18 19 21 20 39 syl13anc RRngxBaseRyBaseRzBaseRzRx+Ry=zRx+RzRy
41 2 12 1 13 opprmul x+RyOz=zRx+Ry
42 36 28 oveq12i xOz+RyOz=zRx+RzRy
43 40 41 42 3eqtr4g RRngxBaseRyBaseRzBaseRx+RyOz=xOz+RyOz
44 4 7 8 11 17 32 38 43 isrngd RRngORng