Metamath Proof Explorer


Theorem oprres

Description: The restriction of an operation is an operation. (Contributed by NM, 1-Feb-2008) (Revised by AV, 19-Oct-2021)

Ref Expression
Hypotheses oprres.v φxYyYxFy=xGy
oprres.s φYX
oprres.f φF:Y×YR
oprres.g φG:X×XS
Assertion oprres φF=GY×Y

Proof

Step Hyp Ref Expression
1 oprres.v φxYyYxFy=xGy
2 oprres.s φYX
3 oprres.f φF:Y×YR
4 oprres.g φG:X×XS
5 1 3expb φxYyYxFy=xGy
6 ovres xYyYxGY×Yy=xGy
7 6 adantl φxYyYxGY×Yy=xGy
8 5 7 eqtr4d φxYyYxFy=xGY×Yy
9 8 ralrimivva φxYyYxFy=xGY×Yy
10 eqid Y×Y=Y×Y
11 9 10 jctil φY×Y=Y×YxYyYxFy=xGY×Yy
12 3 ffnd φFFnY×Y
13 4 ffnd φGFnX×X
14 xpss12 YXYXY×YX×X
15 2 2 14 syl2anc φY×YX×X
16 fnssres GFnX×XY×YX×XGY×YFnY×Y
17 13 15 16 syl2anc φGY×YFnY×Y
18 eqfnov FFnY×YGY×YFnY×YF=GY×YY×Y=Y×YxYyYxFy=xGY×Yy
19 12 17 18 syl2anc φF=GY×YY×Y=Y×YxYyYxFy=xGY×Yy
20 11 19 mpbird φF=GY×Y