Metamath Proof Explorer


Theorem ordelordALT

Description: An element of an ordinal class is ordinal. Proposition 7.6 of TakeutiZaring p. 36. This is an alternate proof of ordelord using the Axiom of Regularity indirectly through dford2 . dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that _E Fr A because this is inferred by the Axiom of Regularity. ordelordALT is ordelordALTVD without virtual deductions and was automatically derived from ordelordALTVD using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Feb-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ordelordALT OrdABAOrdB

Proof

Step Hyp Ref Expression
1 ordtr OrdATrA
2 1 adantr OrdABATrA
3 dford2 OrdATrAxAyAxyx=yyx
4 3 simprbi OrdAxAyAxyx=yyx
5 4 adantr OrdABAxAyAxyx=yyx
6 3orcomb xyx=yyxxyyxx=y
7 6 2ralbii xAyAxyx=yyxxAyAxyyxx=y
8 5 7 sylib OrdABAxAyAxyyxx=y
9 simpr OrdABABA
10 tratrb TrAxAyAxyyxx=yBATrB
11 2 8 9 10 syl3anc OrdABATrB
12 trss TrABABA
13 2 9 12 sylc OrdABABA
14 ssralv2 BABAxAyAxyx=yyxxByBxyx=yyx
15 14 ex BABAxAyAxyx=yyxxByBxyx=yyx
16 13 13 5 15 syl3c OrdABAxByBxyx=yyx
17 dford2 OrdBTrBxByBxyx=yyx
18 11 16 17 sylanbrc OrdABAOrdB