Metamath Proof Explorer


Theorem ordsucelsuc

Description: Membership is inherited by successors. Generalization of Exercise 9 of TakeutiZaring p. 42. (Contributed by NM, 22-Jun-1998) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion ordsucelsuc OrdBABsucAsucB

Proof

Step Hyp Ref Expression
1 simpl OrdBABOrdB
2 ordelord OrdBABOrdA
3 1 2 jca OrdBABOrdBOrdA
4 simpl OrdBsucAsucBOrdB
5 ordsuc OrdBOrdsucB
6 ordelord OrdsucBsucAsucBOrdsucA
7 ordsuc OrdAOrdsucA
8 6 7 sylibr OrdsucBsucAsucBOrdA
9 5 8 sylanb OrdBsucAsucBOrdA
10 4 9 jca OrdBsucAsucBOrdBOrdA
11 ordsseleq OrdsucAOrdBsucABsucABsucA=B
12 7 11 sylanb OrdAOrdBsucABsucABsucA=B
13 12 ancoms OrdBOrdAsucABsucABsucA=B
14 13 adantl AVOrdBOrdAsucABsucABsucA=B
15 ordsucss OrdBABsucAB
16 15 ad2antrl AVOrdBOrdAABsucAB
17 sucssel AVsucABAB
18 17 adantr AVOrdBOrdAsucABAB
19 16 18 impbid AVOrdBOrdAABsucAB
20 sucexb AVsucAV
21 elsucg sucAVsucAsucBsucABsucA=B
22 20 21 sylbi AVsucAsucBsucABsucA=B
23 22 adantr AVOrdBOrdAsucAsucBsucABsucA=B
24 14 19 23 3bitr4d AVOrdBOrdAABsucAsucB
25 24 ex AVOrdBOrdAABsucAsucB
26 elex ABAV
27 elex sucAsucBsucAV
28 27 20 sylibr sucAsucBAV
29 26 28 pm5.21ni ¬AVABsucAsucB
30 29 a1d ¬AVOrdBOrdAABsucAsucB
31 25 30 pm2.61i OrdBOrdAABsucAsucB
32 3 10 31 pm5.21nd OrdBABsucAsucB