Metamath Proof Explorer


Theorem ordtrestixx

Description: The restriction of the less than order to an interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypotheses ordtrestixx.1 A*
ordtrestixx.2 xAyAxyA
Assertion ordtrestixx ordTop𝑡A=ordTopA×A

Proof

Step Hyp Ref Expression
1 ordtrestixx.1 A*
2 ordtrestixx.2 xAyAxyA
3 ledm *=dom
4 letsr TosetRel
5 4 a1i TosetRel
6 1 a1i A*
7 1 sseli xAx*
8 1 sseli yAy*
9 iccval x*y*xy=z*|xzzy
10 7 8 9 syl2an xAyAxy=z*|xzzy
11 10 2 eqsstrrd xAyAz*|xzzyA
12 11 adantl xAyAz*|xzzyA
13 3 5 6 12 ordtrest2 ordTopA×A=ordTop𝑡A
14 13 eqcomd ordTop𝑡A=ordTopA×A
15 14 mptru ordTop𝑡A=ordTopA×A