Metamath Proof Explorer


Theorem ordunifi

Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013) (Revised by Mario Carneiro, 29-Jan-2014)

Ref Expression
Assertion ordunifi AOnAFinAAA

Proof

Step Hyp Ref Expression
1 epweon EWeOn
2 weso EWeOnEOrOn
3 1 2 ax-mp EOrOn
4 soss AOnEOrOnEOrA
5 3 4 mpi AOnEOrA
6 fimax2g EOrAAFinAxAyA¬xEy
7 5 6 syl3an1 AOnAFinAxAyA¬xEy
8 ssel2 AOnyAyOn
9 8 adantlr AOnxAyAyOn
10 ssel2 AOnxAxOn
11 10 adantr AOnxAyAxOn
12 epel xEyxy
13 12 notbii ¬xEy¬xy
14 ontri1 yOnxOnyx¬xy
15 13 14 bitr4id yOnxOn¬xEyyx
16 9 11 15 syl2anc AOnxAyA¬xEyyx
17 16 ralbidva AOnxAyA¬xEyyAyx
18 unissb AxyAyx
19 17 18 bitr4di AOnxAyA¬xEyAx
20 19 rexbidva AOnxAyA¬xEyxAAx
21 20 3ad2ant1 AOnAFinAxAyA¬xEyxAAx
22 7 21 mpbid AOnAFinAxAAx
23 elssuni xAxA
24 eqss x=AxAAx
25 eleq1 x=AxAAA
26 25 biimpcd xAx=AAA
27 24 26 biimtrrid xAxAAxAA
28 23 27 mpand xAAxAA
29 28 rexlimiv xAAxAA
30 22 29 syl AOnAFinAAA