Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013) (Revised by Mario Carneiro, 29-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ordunifi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon | |
|
2 | weso | |
|
3 | 1 2 | ax-mp | |
4 | soss | |
|
5 | 3 4 | mpi | |
6 | fimax2g | |
|
7 | 5 6 | syl3an1 | |
8 | ssel2 | |
|
9 | 8 | adantlr | |
10 | ssel2 | |
|
11 | 10 | adantr | |
12 | epel | |
|
13 | 12 | notbii | |
14 | ontri1 | |
|
15 | 13 14 | bitr4id | |
16 | 9 11 15 | syl2anc | |
17 | 16 | ralbidva | |
18 | unissb | |
|
19 | 17 18 | bitr4di | |
20 | 19 | rexbidva | |
21 | 20 | 3ad2ant1 | |
22 | 7 21 | mpbid | |
23 | elssuni | |
|
24 | eqss | |
|
25 | eleq1 | |
|
26 | 25 | biimpcd | |
27 | 24 26 | biimtrrid | |
28 | 23 27 | mpand | |
29 | 28 | rexlimiv | |
30 | 22 29 | syl | |