Description: In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | orngmullt.b | |
|
orngmullt.t | |
||
orngmullt.0 | |
||
orngmullt.l | |
||
orngmullt.1 | |
||
orngmullt.4 | |
||
orngmullt.2 | |
||
orngmullt.3 | |
||
orngmullt.x | |
||
orngmullt.y | |
||
Assertion | orngmullt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orngmullt.b | |
|
2 | orngmullt.t | |
|
3 | orngmullt.0 | |
|
4 | orngmullt.l | |
|
5 | orngmullt.1 | |
|
6 | orngmullt.4 | |
|
7 | orngmullt.2 | |
|
8 | orngmullt.3 | |
|
9 | orngmullt.x | |
|
10 | orngmullt.y | |
|
11 | orngring | |
|
12 | ringgrp | |
|
13 | 1 3 | grpidcl | |
14 | 5 11 12 13 | 4syl | |
15 | eqid | |
|
16 | 15 4 | pltval | |
17 | 5 14 7 16 | syl3anc | |
18 | 9 17 | mpbid | |
19 | 18 | simpld | |
20 | 15 4 | pltval | |
21 | 5 14 8 20 | syl3anc | |
22 | 10 21 | mpbid | |
23 | 22 | simpld | |
24 | 1 15 3 2 | orngmul | |
25 | 5 7 19 8 23 24 | syl122anc | |
26 | 18 | simprd | |
27 | 26 | necomd | |
28 | 22 | simprd | |
29 | 28 | necomd | |
30 | 1 3 2 6 7 8 | drngmulne0 | |
31 | 27 29 30 | mpbir2and | |
32 | 31 | necomd | |
33 | 5 11 | syl | |
34 | 1 2 | ringcl | |
35 | 33 7 8 34 | syl3anc | |
36 | 15 4 | pltval | |
37 | 5 14 35 36 | syl3anc | |
38 | 25 32 37 | mpbir2and | |