Metamath Proof Explorer


Theorem orngmullt

Description: In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses orngmullt.b B=BaseR
orngmullt.t ·˙=R
orngmullt.0 0˙=0R
orngmullt.l <˙=<R
orngmullt.1 φRoRing
orngmullt.4 φRDivRing
orngmullt.2 φXB
orngmullt.3 φYB
orngmullt.x φ0˙<˙X
orngmullt.y φ0˙<˙Y
Assertion orngmullt φ0˙<˙X·˙Y

Proof

Step Hyp Ref Expression
1 orngmullt.b B=BaseR
2 orngmullt.t ·˙=R
3 orngmullt.0 0˙=0R
4 orngmullt.l <˙=<R
5 orngmullt.1 φRoRing
6 orngmullt.4 φRDivRing
7 orngmullt.2 φXB
8 orngmullt.3 φYB
9 orngmullt.x φ0˙<˙X
10 orngmullt.y φ0˙<˙Y
11 orngring RoRingRRing
12 ringgrp RRingRGrp
13 1 3 grpidcl RGrp0˙B
14 5 11 12 13 4syl φ0˙B
15 eqid R=R
16 15 4 pltval RoRing0˙BXB0˙<˙X0˙RX0˙X
17 5 14 7 16 syl3anc φ0˙<˙X0˙RX0˙X
18 9 17 mpbid φ0˙RX0˙X
19 18 simpld φ0˙RX
20 15 4 pltval RoRing0˙BYB0˙<˙Y0˙RY0˙Y
21 5 14 8 20 syl3anc φ0˙<˙Y0˙RY0˙Y
22 10 21 mpbid φ0˙RY0˙Y
23 22 simpld φ0˙RY
24 1 15 3 2 orngmul RoRingXB0˙RXYB0˙RY0˙RX·˙Y
25 5 7 19 8 23 24 syl122anc φ0˙RX·˙Y
26 18 simprd φ0˙X
27 26 necomd φX0˙
28 22 simprd φ0˙Y
29 28 necomd φY0˙
30 1 3 2 6 7 8 drngmulne0 φX·˙Y0˙X0˙Y0˙
31 27 29 30 mpbir2and φX·˙Y0˙
32 31 necomd φ0˙X·˙Y
33 5 11 syl φRRing
34 1 2 ringcl RRingXBYBX·˙YB
35 33 7 8 34 syl3anc φX·˙YB
36 15 4 pltval RoRing0˙BX·˙YB0˙<˙X·˙Y0˙RX·˙Y0˙X·˙Y
37 5 14 35 36 syl3anc φ0˙<˙X·˙Y0˙RX·˙Y0˙X·˙Y
38 25 32 37 mpbir2and φ0˙<˙X·˙Y