Metamath Proof Explorer


Theorem orvcval4

Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval . (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Hypotheses orvccel.1 φ S ran sigAlgebra
orvccel.2 φ J Top
orvccel.3 φ X S MblFn μ 𝛔 J
orvccel.4 φ A V
Assertion orvcval4 φ X R RV/c A = X -1 y J | y R A

Proof

Step Hyp Ref Expression
1 orvccel.1 φ S ran sigAlgebra
2 orvccel.2 φ J Top
3 orvccel.3 φ X S MblFn μ 𝛔 J
4 orvccel.4 φ A V
5 2 sgsiga φ 𝛔 J ran sigAlgebra
6 1 5 3 isanmbfm φ X ran MblFn μ
7 6 mbfmfun φ Fun X
8 1 5 3 mbfmf φ X : S 𝛔 J
9 elex J Top J V
10 unisg J V 𝛔 J = J
11 2 9 10 3syl φ 𝛔 J = J
12 11 feq3d φ X : S 𝛔 J X : S J
13 8 12 mpbid φ X : S J
14 13 frnd φ ran X J
15 fimacnvinrn2 Fun X ran X J X -1 y | y R A = X -1 y | y R A J
16 7 14 15 syl2anc φ X -1 y | y R A = X -1 y | y R A J
17 7 3 4 orvcval φ X R RV/c A = X -1 y | y R A
18 dfrab2 y J | y R A = y | y R A J
19 18 a1i φ y J | y R A = y | y R A J
20 19 imaeq2d φ X -1 y J | y R A = X -1 y | y R A J
21 16 17 20 3eqtr4d φ X R RV/c A = X -1 y J | y R A