Metamath Proof Explorer


Theorem ovn0

Description: For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (ii) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis ovn0.1 φ X Fin
Assertion ovn0 φ voln* X = 0

Proof

Step Hyp Ref Expression
1 ovn0.1 φ X Fin
2 0ss X
3 2 a1i φ X
4 0ss j k X . i j k
5 4 a1i z = sum^ j k X vol . i j k j k X . i j k
6 id z = sum^ j k X vol . i j k z = sum^ j k X vol . i j k
7 5 6 jca z = sum^ j k X vol . i j k j k X . i j k z = sum^ j k X vol . i j k
8 simpr j k X . i j k z = sum^ j k X vol . i j k z = sum^ j k X vol . i j k
9 7 8 impbii z = sum^ j k X vol . i j k j k X . i j k z = sum^ j k X vol . i j k
10 9 rexbii i 2 X z = sum^ j k X vol . i j k i 2 X j k X . i j k z = sum^ j k X vol . i j k
11 10 rgenw z * i 2 X z = sum^ j k X vol . i j k i 2 X j k X . i j k z = sum^ j k X vol . i j k
12 rabbi z * i 2 X z = sum^ j k X vol . i j k i 2 X j k X . i j k z = sum^ j k X vol . i j k z * | i 2 X z = sum^ j k X vol . i j k = z * | i 2 X j k X . i j k z = sum^ j k X vol . i j k
13 11 12 mpbi z * | i 2 X z = sum^ j k X vol . i j k = z * | i 2 X j k X . i j k z = sum^ j k X vol . i j k
14 1 3 13 ovnval2 φ voln* X = if X = 0 sup z * | i 2 X z = sum^ j k X vol . i j k * <
15 simpr φ X = X =
16 15 iftrued φ X = if X = 0 sup z * | i 2 X z = sum^ j k X vol . i j k * < = 0
17 iffalse ¬ X = if X = 0 sup z * | i 2 X z = sum^ j k X vol . i j k * < = sup z * | i 2 X z = sum^ j k X vol . i j k * <
18 17 adantl φ ¬ X = if X = 0 sup z * | i 2 X z = sum^ j k X vol . i j k * < = sup z * | i 2 X z = sum^ j k X vol . i j k * <
19 1 adantr φ ¬ X = X Fin
20 neqne ¬ X = X
21 20 adantl φ ¬ X = X
22 eqid z * | i 2 X z = sum^ j k X vol . i j k = z * | i 2 X z = sum^ j k X vol . i j k
23 14 17 sylan9eq φ ¬ X = voln* X = sup z * | i 2 X z = sum^ j k X vol . i j k * <
24 23 eqcomd φ ¬ X = sup z * | i 2 X z = sum^ j k X vol . i j k * < = voln* X
25 1 ovnf φ voln* X : 𝒫 X 0 +∞
26 0elpw 𝒫 X
27 26 a1i φ 𝒫 X
28 25 27 ffvelrnd φ voln* X 0 +∞
29 28 adantr φ ¬ X = voln* X 0 +∞
30 24 29 eqeltrd φ ¬ X = sup z * | i 2 X z = sum^ j k X vol . i j k * < 0 +∞
31 eqidd m = l 1 0 = 1 0
32 31 cbvmptv m X 1 0 = l X 1 0
33 32 a1i h = j m X 1 0 = l X 1 0
34 33 cbvmptv h m X 1 0 = j l X 1 0
35 19 21 22 30 34 ovn0lem φ ¬ X = sup z * | i 2 X z = sum^ j k X vol . i j k * < = 0
36 18 35 eqtrd φ ¬ X = if X = 0 sup z * | i 2 X z = sum^ j k X vol . i j k * < = 0
37 16 36 pm2.61dan φ if X = 0 sup z * | i 2 X z = sum^ j k X vol . i j k * < = 0
38 14 37 eqtrd φ voln* X = 0