Metamath Proof Explorer


Theorem ovn0lem

Description: For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (a)(ii) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovn0lem.x φXFin
ovn0lem.n0 φX
ovn0lem.m M=z*|i2Xz=sum^jkXvol.ijk
ovn0lem.infm φsupM*<0+∞
ovn0lem.i I=jlX10
Assertion ovn0lem φsupM*<=0

Proof

Step Hyp Ref Expression
1 ovn0lem.x φXFin
2 ovn0lem.n0 φX
3 ovn0lem.m M=z*|i2Xz=sum^jkXvol.ijk
4 ovn0lem.infm φsupM*<0+∞
5 ovn0lem.i I=jlX10
6 iccssxr 0+∞*
7 6 4 sselid φsupM*<*
8 0xr 0*
9 8 a1i φ0*
10 ssrab2 z*|i2Xz=sum^jkXvol.ijk*
11 3 10 eqsstri M*
12 11 a1i φM*
13 1re 1
14 0re 0
15 13 14 pm3.2i 10
16 opelxp 10210
17 15 16 mpbir 102
18 17 a1i φlX102
19 eqid lX10=lX10
20 18 19 fmptd φlX10:X2
21 reex V
22 21 21 xpex 2V
23 22 a1i φ2V
24 elmapg 2VXFinlX102XlX10:X2
25 23 1 24 syl2anc φlX102XlX10:X2
26 20 25 mpbird φlX102X
27 26 adantr φjlX102X
28 27 5 fmptd φI:2X
29 ovexd φ2XV
30 nnex V
31 30 a1i φV
32 elmapg 2XVVI2XI:2X
33 29 31 32 syl2anc φI2XI:2X
34 28 33 mpbird φI2X
35 n0 XllX
36 2 35 sylib φllX
37 36 adantr φjllX
38 nfv kφjlX
39 nfcv _kvol.Ijl
40 1 ad2antrr φjlXXFin
41 28 ffvelcdmda φjIj2X
42 elmapi Ij2XIj:X2
43 41 42 syl φjIj:X2
44 43 adantr φjkXIj:X2
45 simpr φjkXkX
46 44 45 fvovco φjkX.Ijk=1stIjk2ndIjk
47 simpr φjj
48 27 elexd φjlX10V
49 5 fvmpt2 jlX10VIj=lX10
50 47 48 49 syl2anc φjIj=lX10
51 50 adantr φjkXIj=lX10
52 eqidd φjkXl=k10=10
53 17 elexi 10V
54 53 a1i φjkX10V
55 51 52 45 54 fvmptd φjkXIjk=10
56 55 fveq2d φjkX1stIjk=1st10
57 13 elexi 1V
58 8 elexi 0V
59 57 58 op1st 1st10=1
60 59 a1i φjkX1st10=1
61 56 60 eqtrd φjkX1stIjk=1
62 55 fveq2d φjkX2ndIjk=2nd10
63 57 58 op2nd 2nd10=0
64 63 a1i φjkX2nd10=0
65 62 64 eqtrd φjkX2ndIjk=0
66 61 65 oveq12d φjkX1stIjk2ndIjk=10
67 0le1 01
68 1xr 1*
69 ico0 1*0*10=01
70 68 8 69 mp2an 10=01
71 67 70 mpbir 10=
72 71 a1i φjkX10=
73 46 66 72 3eqtrd φjkX.Ijk=
74 73 fveq2d φjkXvol.Ijk=vol
75 vol0 vol=0
76 75 a1i φjkXvol=0
77 74 76 eqtrd φjkXvol.Ijk=0
78 0cn 0
79 78 a1i φjkX0
80 77 79 eqeltrd φjkXvol.Ijk
81 80 adantlr φjlXkXvol.Ijk
82 2fveq3 k=lvol.Ijk=vol.Ijl
83 simpr φjlXlX
84 eleq1w k=lkXlX
85 84 anbi2d k=lφjkXφjlX
86 82 eqeq1d k=lvol.Ijk=0vol.Ijl=0
87 85 86 imbi12d k=lφjkXvol.Ijk=0φjlXvol.Ijl=0
88 87 77 chvarvv φjlXvol.Ijl=0
89 38 39 40 81 82 83 88 fprod0 φjlXkXvol.Ijk=0
90 89 ex φjlXkXvol.Ijk=0
91 90 exlimdv φjllXkXvol.Ijk=0
92 37 91 mpd φjkXvol.Ijk=0
93 92 mpteq2dva φjkXvol.Ijk=j0
94 93 fveq2d φsum^jkXvol.Ijk=sum^j0
95 nfv jφ
96 95 31 sge0z φsum^j0=0
97 eqidd φ0=0
98 94 96 97 3eqtrrd φ0=sum^jkXvol.Ijk
99 fveq1 i=Iij=Ij
100 99 coeq2d i=I.ij=.Ij
101 100 fveq1d i=I.ijk=.Ijk
102 101 fveq2d i=Ivol.ijk=vol.Ijk
103 102 ralrimivw i=IkXvol.ijk=vol.Ijk
104 103 prodeq2d i=IkXvol.ijk=kXvol.Ijk
105 104 mpteq2dv i=IjkXvol.ijk=jkXvol.Ijk
106 105 fveq2d i=Isum^jkXvol.ijk=sum^jkXvol.Ijk
107 106 rspceeqv I2X0=sum^jkXvol.Ijki2X0=sum^jkXvol.ijk
108 34 98 107 syl2anc φi2X0=sum^jkXvol.ijk
109 9 108 jca φ0*i2X0=sum^jkXvol.ijk
110 eqeq1 z=0z=sum^jkXvol.ijk0=sum^jkXvol.ijk
111 110 rexbidv z=0i2Xz=sum^jkXvol.ijki2X0=sum^jkXvol.ijk
112 111 3 elrab2 0M0*i2X0=sum^jkXvol.ijk
113 109 112 sylibr φ0M
114 infxrlb M*0MsupM*<0
115 12 113 114 syl2anc φsupM*<0
116 pnfxr +∞*
117 116 a1i φ+∞*
118 iccgelb 0*+∞*supM*<0+∞0supM*<
119 9 117 4 118 syl3anc φ0supM*<
120 7 9 115 119 xrletrid φsupM*<=0