| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovn0lem.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
ovn0lem.n0 |
|- ( ph -> X =/= (/) ) |
| 3 |
|
ovn0lem.m |
|- M = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) } |
| 4 |
|
ovn0lem.infm |
|- ( ph -> inf ( M , RR* , < ) e. ( 0 [,] +oo ) ) |
| 5 |
|
ovn0lem.i |
|- I = ( j e. NN |-> ( l e. X |-> <. 1 , 0 >. ) ) |
| 6 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 7 |
6 4
|
sselid |
|- ( ph -> inf ( M , RR* , < ) e. RR* ) |
| 8 |
|
0xr |
|- 0 e. RR* |
| 9 |
8
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 10 |
|
ssrab2 |
|- { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) } C_ RR* |
| 11 |
3 10
|
eqsstri |
|- M C_ RR* |
| 12 |
11
|
a1i |
|- ( ph -> M C_ RR* ) |
| 13 |
|
1re |
|- 1 e. RR |
| 14 |
|
0re |
|- 0 e. RR |
| 15 |
13 14
|
pm3.2i |
|- ( 1 e. RR /\ 0 e. RR ) |
| 16 |
|
opelxp |
|- ( <. 1 , 0 >. e. ( RR X. RR ) <-> ( 1 e. RR /\ 0 e. RR ) ) |
| 17 |
15 16
|
mpbir |
|- <. 1 , 0 >. e. ( RR X. RR ) |
| 18 |
17
|
a1i |
|- ( ( ph /\ l e. X ) -> <. 1 , 0 >. e. ( RR X. RR ) ) |
| 19 |
|
eqid |
|- ( l e. X |-> <. 1 , 0 >. ) = ( l e. X |-> <. 1 , 0 >. ) |
| 20 |
18 19
|
fmptd |
|- ( ph -> ( l e. X |-> <. 1 , 0 >. ) : X --> ( RR X. RR ) ) |
| 21 |
|
reex |
|- RR e. _V |
| 22 |
21 21
|
xpex |
|- ( RR X. RR ) e. _V |
| 23 |
22
|
a1i |
|- ( ph -> ( RR X. RR ) e. _V ) |
| 24 |
|
elmapg |
|- ( ( ( RR X. RR ) e. _V /\ X e. Fin ) -> ( ( l e. X |-> <. 1 , 0 >. ) e. ( ( RR X. RR ) ^m X ) <-> ( l e. X |-> <. 1 , 0 >. ) : X --> ( RR X. RR ) ) ) |
| 25 |
23 1 24
|
syl2anc |
|- ( ph -> ( ( l e. X |-> <. 1 , 0 >. ) e. ( ( RR X. RR ) ^m X ) <-> ( l e. X |-> <. 1 , 0 >. ) : X --> ( RR X. RR ) ) ) |
| 26 |
20 25
|
mpbird |
|- ( ph -> ( l e. X |-> <. 1 , 0 >. ) e. ( ( RR X. RR ) ^m X ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( l e. X |-> <. 1 , 0 >. ) e. ( ( RR X. RR ) ^m X ) ) |
| 28 |
27 5
|
fmptd |
|- ( ph -> I : NN --> ( ( RR X. RR ) ^m X ) ) |
| 29 |
|
ovexd |
|- ( ph -> ( ( RR X. RR ) ^m X ) e. _V ) |
| 30 |
|
nnex |
|- NN e. _V |
| 31 |
30
|
a1i |
|- ( ph -> NN e. _V ) |
| 32 |
|
elmapg |
|- ( ( ( ( RR X. RR ) ^m X ) e. _V /\ NN e. _V ) -> ( I e. ( ( ( RR X. RR ) ^m X ) ^m NN ) <-> I : NN --> ( ( RR X. RR ) ^m X ) ) ) |
| 33 |
29 31 32
|
syl2anc |
|- ( ph -> ( I e. ( ( ( RR X. RR ) ^m X ) ^m NN ) <-> I : NN --> ( ( RR X. RR ) ^m X ) ) ) |
| 34 |
28 33
|
mpbird |
|- ( ph -> I e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) |
| 35 |
|
n0 |
|- ( X =/= (/) <-> E. l l e. X ) |
| 36 |
2 35
|
sylib |
|- ( ph -> E. l l e. X ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ j e. NN ) -> E. l l e. X ) |
| 38 |
|
nfv |
|- F/ k ( ( ph /\ j e. NN ) /\ l e. X ) |
| 39 |
|
nfcv |
|- F/_ k ( vol ` ( ( [,) o. ( I ` j ) ) ` l ) ) |
| 40 |
1
|
ad2antrr |
|- ( ( ( ph /\ j e. NN ) /\ l e. X ) -> X e. Fin ) |
| 41 |
28
|
ffvelcdmda |
|- ( ( ph /\ j e. NN ) -> ( I ` j ) e. ( ( RR X. RR ) ^m X ) ) |
| 42 |
|
elmapi |
|- ( ( I ` j ) e. ( ( RR X. RR ) ^m X ) -> ( I ` j ) : X --> ( RR X. RR ) ) |
| 43 |
41 42
|
syl |
|- ( ( ph /\ j e. NN ) -> ( I ` j ) : X --> ( RR X. RR ) ) |
| 44 |
43
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( I ` j ) : X --> ( RR X. RR ) ) |
| 45 |
|
simpr |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> k e. X ) |
| 46 |
44 45
|
fvovco |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( ( 1st ` ( ( I ` j ) ` k ) ) [,) ( 2nd ` ( ( I ` j ) ` k ) ) ) ) |
| 47 |
|
simpr |
|- ( ( ph /\ j e. NN ) -> j e. NN ) |
| 48 |
27
|
elexd |
|- ( ( ph /\ j e. NN ) -> ( l e. X |-> <. 1 , 0 >. ) e. _V ) |
| 49 |
5
|
fvmpt2 |
|- ( ( j e. NN /\ ( l e. X |-> <. 1 , 0 >. ) e. _V ) -> ( I ` j ) = ( l e. X |-> <. 1 , 0 >. ) ) |
| 50 |
47 48 49
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( I ` j ) = ( l e. X |-> <. 1 , 0 >. ) ) |
| 51 |
50
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( I ` j ) = ( l e. X |-> <. 1 , 0 >. ) ) |
| 52 |
|
eqidd |
|- ( ( ( ( ph /\ j e. NN ) /\ k e. X ) /\ l = k ) -> <. 1 , 0 >. = <. 1 , 0 >. ) |
| 53 |
17
|
elexi |
|- <. 1 , 0 >. e. _V |
| 54 |
53
|
a1i |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> <. 1 , 0 >. e. _V ) |
| 55 |
51 52 45 54
|
fvmptd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( ( I ` j ) ` k ) = <. 1 , 0 >. ) |
| 56 |
55
|
fveq2d |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 1st ` ( ( I ` j ) ` k ) ) = ( 1st ` <. 1 , 0 >. ) ) |
| 57 |
13
|
elexi |
|- 1 e. _V |
| 58 |
8
|
elexi |
|- 0 e. _V |
| 59 |
57 58
|
op1st |
|- ( 1st ` <. 1 , 0 >. ) = 1 |
| 60 |
59
|
a1i |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 1st ` <. 1 , 0 >. ) = 1 ) |
| 61 |
56 60
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 1st ` ( ( I ` j ) ` k ) ) = 1 ) |
| 62 |
55
|
fveq2d |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 2nd ` ( ( I ` j ) ` k ) ) = ( 2nd ` <. 1 , 0 >. ) ) |
| 63 |
57 58
|
op2nd |
|- ( 2nd ` <. 1 , 0 >. ) = 0 |
| 64 |
63
|
a1i |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 2nd ` <. 1 , 0 >. ) = 0 ) |
| 65 |
62 64
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 2nd ` ( ( I ` j ) ` k ) ) = 0 ) |
| 66 |
61 65
|
oveq12d |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( ( 1st ` ( ( I ` j ) ` k ) ) [,) ( 2nd ` ( ( I ` j ) ` k ) ) ) = ( 1 [,) 0 ) ) |
| 67 |
|
0le1 |
|- 0 <_ 1 |
| 68 |
|
1xr |
|- 1 e. RR* |
| 69 |
|
ico0 |
|- ( ( 1 e. RR* /\ 0 e. RR* ) -> ( ( 1 [,) 0 ) = (/) <-> 0 <_ 1 ) ) |
| 70 |
68 8 69
|
mp2an |
|- ( ( 1 [,) 0 ) = (/) <-> 0 <_ 1 ) |
| 71 |
67 70
|
mpbir |
|- ( 1 [,) 0 ) = (/) |
| 72 |
71
|
a1i |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 1 [,) 0 ) = (/) ) |
| 73 |
46 66 72
|
3eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( ( [,) o. ( I ` j ) ) ` k ) = (/) ) |
| 74 |
73
|
fveq2d |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` (/) ) ) |
| 75 |
|
vol0 |
|- ( vol ` (/) ) = 0 |
| 76 |
75
|
a1i |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( vol ` (/) ) = 0 ) |
| 77 |
74 76
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = 0 ) |
| 78 |
|
0cn |
|- 0 e. CC |
| 79 |
78
|
a1i |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> 0 e. CC ) |
| 80 |
77 79
|
eqeltrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) e. CC ) |
| 81 |
80
|
adantlr |
|- ( ( ( ( ph /\ j e. NN ) /\ l e. X ) /\ k e. X ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) e. CC ) |
| 82 |
|
2fveq3 |
|- ( k = l -> ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` l ) ) ) |
| 83 |
|
simpr |
|- ( ( ( ph /\ j e. NN ) /\ l e. X ) -> l e. X ) |
| 84 |
|
eleq1w |
|- ( k = l -> ( k e. X <-> l e. X ) ) |
| 85 |
84
|
anbi2d |
|- ( k = l -> ( ( ( ph /\ j e. NN ) /\ k e. X ) <-> ( ( ph /\ j e. NN ) /\ l e. X ) ) ) |
| 86 |
82
|
eqeq1d |
|- ( k = l -> ( ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = 0 <-> ( vol ` ( ( [,) o. ( I ` j ) ) ` l ) ) = 0 ) ) |
| 87 |
85 86
|
imbi12d |
|- ( k = l -> ( ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = 0 ) <-> ( ( ( ph /\ j e. NN ) /\ l e. X ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` l ) ) = 0 ) ) ) |
| 88 |
87 77
|
chvarvv |
|- ( ( ( ph /\ j e. NN ) /\ l e. X ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` l ) ) = 0 ) |
| 89 |
38 39 40 81 82 83 88
|
fprod0 |
|- ( ( ( ph /\ j e. NN ) /\ l e. X ) -> prod_ k e. X ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = 0 ) |
| 90 |
89
|
ex |
|- ( ( ph /\ j e. NN ) -> ( l e. X -> prod_ k e. X ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = 0 ) ) |
| 91 |
90
|
exlimdv |
|- ( ( ph /\ j e. NN ) -> ( E. l l e. X -> prod_ k e. X ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = 0 ) ) |
| 92 |
37 91
|
mpd |
|- ( ( ph /\ j e. NN ) -> prod_ k e. X ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = 0 ) |
| 93 |
92
|
mpteq2dva |
|- ( ph -> ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) = ( j e. NN |-> 0 ) ) |
| 94 |
93
|
fveq2d |
|- ( ph -> ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) = ( sum^ ` ( j e. NN |-> 0 ) ) ) |
| 95 |
|
nfv |
|- F/ j ph |
| 96 |
95 31
|
sge0z |
|- ( ph -> ( sum^ ` ( j e. NN |-> 0 ) ) = 0 ) |
| 97 |
|
eqidd |
|- ( ph -> 0 = 0 ) |
| 98 |
94 96 97
|
3eqtrrd |
|- ( ph -> 0 = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) |
| 99 |
|
fveq1 |
|- ( i = I -> ( i ` j ) = ( I ` j ) ) |
| 100 |
99
|
coeq2d |
|- ( i = I -> ( [,) o. ( i ` j ) ) = ( [,) o. ( I ` j ) ) ) |
| 101 |
100
|
fveq1d |
|- ( i = I -> ( ( [,) o. ( i ` j ) ) ` k ) = ( ( [,) o. ( I ` j ) ) ` k ) ) |
| 102 |
101
|
fveq2d |
|- ( i = I -> ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
| 103 |
102
|
ralrimivw |
|- ( i = I -> A. k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
| 104 |
103
|
prodeq2d |
|- ( i = I -> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = prod_ k e. X ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
| 105 |
104
|
mpteq2dv |
|- ( i = I -> ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) = ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) |
| 106 |
105
|
fveq2d |
|- ( i = I -> ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) |
| 107 |
106
|
rspceeqv |
|- ( ( I e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ 0 = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) -> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) 0 = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) |
| 108 |
34 98 107
|
syl2anc |
|- ( ph -> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) 0 = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) |
| 109 |
9 108
|
jca |
|- ( ph -> ( 0 e. RR* /\ E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) 0 = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
| 110 |
|
eqeq1 |
|- ( z = 0 -> ( z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) <-> 0 = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
| 111 |
110
|
rexbidv |
|- ( z = 0 -> ( E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) <-> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) 0 = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
| 112 |
111 3
|
elrab2 |
|- ( 0 e. M <-> ( 0 e. RR* /\ E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) 0 = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
| 113 |
109 112
|
sylibr |
|- ( ph -> 0 e. M ) |
| 114 |
|
infxrlb |
|- ( ( M C_ RR* /\ 0 e. M ) -> inf ( M , RR* , < ) <_ 0 ) |
| 115 |
12 113 114
|
syl2anc |
|- ( ph -> inf ( M , RR* , < ) <_ 0 ) |
| 116 |
|
pnfxr |
|- +oo e. RR* |
| 117 |
116
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 118 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ inf ( M , RR* , < ) e. ( 0 [,] +oo ) ) -> 0 <_ inf ( M , RR* , < ) ) |
| 119 |
9 117 4 118
|
syl3anc |
|- ( ph -> 0 <_ inf ( M , RR* , < ) ) |
| 120 |
7 9 115 119
|
xrletrid |
|- ( ph -> inf ( M , RR* , < ) = 0 ) |