Metamath Proof Explorer


Theorem paddval

Description: Projective subspace sum operation value. (Contributed by NM, 29-Dec-2011)

Ref Expression
Hypotheses paddfval.l ˙=K
paddfval.j ˙=joinK
paddfval.a A=AtomsK
paddfval.p +˙=+𝑃K
Assertion paddval KBXAYAX+˙Y=XYpA|qXrYp˙q˙r

Proof

Step Hyp Ref Expression
1 paddfval.l ˙=K
2 paddfval.j ˙=joinK
3 paddfval.a A=AtomsK
4 paddfval.p +˙=+𝑃K
5 biid KBKB
6 3 fvexi AV
7 6 elpw2 X𝒫AXA
8 6 elpw2 Y𝒫AYA
9 1 2 3 4 paddfval KB+˙=m𝒫A,n𝒫AmnpA|qmrnp˙q˙r
10 9 oveqd KBX+˙Y=Xm𝒫A,n𝒫AmnpA|qmrnp˙q˙rY
11 10 3ad2ant1 KBX𝒫AY𝒫AX+˙Y=Xm𝒫A,n𝒫AmnpA|qmrnp˙q˙rY
12 simpl X𝒫AY𝒫AX𝒫A
13 simpr X𝒫AY𝒫AY𝒫A
14 unexg X𝒫AY𝒫AXYV
15 6 rabex pA|qXrYp˙q˙rV
16 unexg XYVpA|qXrYp˙q˙rVXYpA|qXrYp˙q˙rV
17 14 15 16 sylancl X𝒫AY𝒫AXYpA|qXrYp˙q˙rV
18 12 13 17 3jca X𝒫AY𝒫AX𝒫AY𝒫AXYpA|qXrYp˙q˙rV
19 18 3adant1 KBX𝒫AY𝒫AX𝒫AY𝒫AXYpA|qXrYp˙q˙rV
20 uneq1 m=Xmn=Xn
21 rexeq m=Xqmrnp˙q˙rqXrnp˙q˙r
22 21 rabbidv m=XpA|qmrnp˙q˙r=pA|qXrnp˙q˙r
23 20 22 uneq12d m=XmnpA|qmrnp˙q˙r=XnpA|qXrnp˙q˙r
24 uneq2 n=YXn=XY
25 rexeq n=Yrnp˙q˙rrYp˙q˙r
26 25 rexbidv n=YqXrnp˙q˙rqXrYp˙q˙r
27 26 rabbidv n=YpA|qXrnp˙q˙r=pA|qXrYp˙q˙r
28 24 27 uneq12d n=YXnpA|qXrnp˙q˙r=XYpA|qXrYp˙q˙r
29 eqid m𝒫A,n𝒫AmnpA|qmrnp˙q˙r=m𝒫A,n𝒫AmnpA|qmrnp˙q˙r
30 23 28 29 ovmpog X𝒫AY𝒫AXYpA|qXrYp˙q˙rVXm𝒫A,n𝒫AmnpA|qmrnp˙q˙rY=XYpA|qXrYp˙q˙r
31 19 30 syl KBX𝒫AY𝒫AXm𝒫A,n𝒫AmnpA|qmrnp˙q˙rY=XYpA|qXrYp˙q˙r
32 11 31 eqtrd KBX𝒫AY𝒫AX+˙Y=XYpA|qXrYp˙q˙r
33 5 7 8 32 syl3anbr KBXAYAX+˙Y=XYpA|qXrYp˙q˙r