Description: Lemma for pexmidN . (Contributed by NM, 3-Feb-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pexmidlem.l | |
|
pexmidlem.j | |
||
pexmidlem.a | |
||
pexmidlem.p | |
||
pexmidlem.o | |
||
pexmidlem.m | |
||
Assertion | pexmidlem6N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pexmidlem.l | |
|
2 | pexmidlem.j | |
|
3 | pexmidlem.a | |
|
4 | pexmidlem.p | |
|
5 | pexmidlem.o | |
|
6 | pexmidlem.m | |
|
7 | 1 2 3 4 5 6 | pexmidlem5N | |
8 | 7 | 3adantr1 | |
9 | 8 | fveq2d | |
10 | simpl1 | |
|
11 | 3 5 | pol0N | |
12 | 10 11 | syl | |
13 | 9 12 | eqtrd | |
14 | 13 | ineq1d | |
15 | simpl2 | |
|
16 | simpl3 | |
|
17 | 16 | snssd | |
18 | 3 4 | paddssat | |
19 | 10 15 17 18 | syl3anc | |
20 | 6 19 | eqsstrid | |
21 | 10 15 20 | 3jca | |
22 | 3 4 | sspadd1 | |
23 | 10 15 17 22 | syl3anc | |
24 | 23 6 | sseqtrrdi | |
25 | simpr1 | |
|
26 | eqid | |
|
27 | 3 5 26 | ispsubclN | |
28 | 10 27 | syl | |
29 | 15 25 28 | mpbir2and | |
30 | 3 4 26 | paddatclN | |
31 | 10 29 16 30 | syl3anc | |
32 | 6 31 | eqeltrid | |
33 | 5 26 | psubcli2N | |
34 | 10 32 33 | syl2anc | |
35 | 24 34 | jca | |
36 | 3 5 | poml4N | |
37 | 21 35 36 | sylc | |
38 | sseqin2 | |
|
39 | 20 38 | sylib | |
40 | 14 37 39 | 3eqtr3rd | |
41 | 40 25 | eqtrd | |