Metamath Proof Explorer


Theorem pexmidlem6N

Description: Lemma for pexmidN . (Contributed by NM, 3-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pexmidlem.l ˙ = K
pexmidlem.j ˙ = join K
pexmidlem.a A = Atoms K
pexmidlem.p + ˙ = + 𝑃 K
pexmidlem.o ˙ = 𝑃 K
pexmidlem.m M = X + ˙ p
Assertion pexmidlem6N K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X M = X

Proof

Step Hyp Ref Expression
1 pexmidlem.l ˙ = K
2 pexmidlem.j ˙ = join K
3 pexmidlem.a A = Atoms K
4 pexmidlem.p + ˙ = + 𝑃 K
5 pexmidlem.o ˙ = 𝑃 K
6 pexmidlem.m M = X + ˙ p
7 1 2 3 4 5 6 pexmidlem5N K HL X A p A X ¬ p X + ˙ ˙ X ˙ X M =
8 7 3adantr1 K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X ˙ X M =
9 8 fveq2d K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X ˙ ˙ X M = ˙
10 simpl1 K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X K HL
11 3 5 pol0N K HL ˙ = A
12 10 11 syl K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X ˙ = A
13 9 12 eqtrd K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X ˙ ˙ X M = A
14 13 ineq1d K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X ˙ ˙ X M M = A M
15 simpl2 K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X X A
16 simpl3 K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X p A
17 16 snssd K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X p A
18 3 4 paddssat K HL X A p A X + ˙ p A
19 10 15 17 18 syl3anc K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X X + ˙ p A
20 6 19 eqsstrid K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X M A
21 10 15 20 3jca K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X K HL X A M A
22 3 4 sspadd1 K HL X A p A X X + ˙ p
23 10 15 17 22 syl3anc K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X X X + ˙ p
24 23 6 sseqtrrdi K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X X M
25 simpr1 K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X ˙ ˙ X = X
26 eqid PSubCl K = PSubCl K
27 3 5 26 ispsubclN K HL X PSubCl K X A ˙ ˙ X = X
28 10 27 syl K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X X PSubCl K X A ˙ ˙ X = X
29 15 25 28 mpbir2and K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X X PSubCl K
30 3 4 26 paddatclN K HL X PSubCl K p A X + ˙ p PSubCl K
31 10 29 16 30 syl3anc K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X X + ˙ p PSubCl K
32 6 31 eqeltrid K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X M PSubCl K
33 5 26 psubcli2N K HL M PSubCl K ˙ ˙ M = M
34 10 32 33 syl2anc K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X ˙ ˙ M = M
35 24 34 jca K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X X M ˙ ˙ M = M
36 3 5 poml4N K HL X A M A X M ˙ ˙ M = M ˙ ˙ X M M = ˙ ˙ X
37 21 35 36 sylc K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X ˙ ˙ X M M = ˙ ˙ X
38 sseqin2 M A A M = M
39 20 38 sylib K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X A M = M
40 14 37 39 3eqtr3rd K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X M = ˙ ˙ X
41 40 25 eqtrd K HL X A p A ˙ ˙ X = X X ¬ p X + ˙ ˙ X M = X