Metamath Proof Explorer


Theorem pfxnd

Description: The value of a prefix operation for a length argument larger than the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv ). (Contributed by AV, 3-May-2020)

Ref Expression
Assertion pfxnd WWordVL0W<LWprefixL=

Proof

Step Hyp Ref Expression
1 pfxval WWordVL0WprefixL=Wsubstr0L
2 1 3adant3 WWordVL0W<LWprefixL=Wsubstr0L
3 simp1 WWordVL0W<LWWordV
4 0zd WWordVL0W<L0
5 nn0z L0L
6 5 3ad2ant2 WWordVL0W<LL
7 3 4 6 3jca WWordVL0W<LWWordV0L
8 3mix3 W<L0<0L0W<L
9 8 3ad2ant3 WWordVL0W<L0<0L0W<L
10 swrdnd WWordV0L0<0L0W<LWsubstr0L=
11 7 9 10 sylc WWordVL0W<LWsubstr0L=
12 2 11 eqtrd WWordVL0W<LWprefixL=