Metamath Proof Explorer


Theorem pgindnf

Description: Version of pgind with extraneous not-free requirements. (Contributed by Emmett Weisz, 27-May-2024) (New usage is discouraged.)

Ref Expression
Hypotheses pgindnf.1 xφ
pgindnf.2 yφ
pgindnf.3 x=yψχ
pgindnf.4 y=Aχθ
pgindnf.5 φxy1stx2ndxχψ
Assertion pgindnf φAPgθ

Proof

Step Hyp Ref Expression
1 pgindnf.1 xφ
2 pgindnf.2 yφ
3 pgindnf.3 x=yψχ
4 pgindnf.4 y=Aχθ
5 pgindnf.5 φxy1stx2ndxχψ
6 df-pg Pg=setrecsaV𝒫a×𝒫a
7 nfv xyzχ
8 1 7 nfan xφyzχ
9 pgindlem x𝒫z×𝒫z1stx2ndxz
10 9 sseld x𝒫z×𝒫zy1stx2ndxyz
11 10 imim1d x𝒫z×𝒫zyzχy1stx2ndxχ
12 11 ralimdv2 x𝒫z×𝒫zyzχy1stx2ndxχ
13 5 19.21bi φy1stx2ndxχψ
14 12 13 sylan9r φx𝒫z×𝒫zyzχψ
15 14 impancom φyzχx𝒫z×𝒫zψ
16 8 15 ralrimi φyzχx𝒫z×𝒫zψ
17 vex zV
18 pweq a=z𝒫a=𝒫z
19 18 sqxpeqd a=z𝒫a×𝒫a=𝒫z×𝒫z
20 eqid aV𝒫a×𝒫a=aV𝒫a×𝒫a
21 vpwex 𝒫zV
22 21 21 xpex 𝒫z×𝒫zV
23 19 20 22 fvmpt zVaV𝒫a×𝒫az=𝒫z×𝒫z
24 17 23 ax-mp aV𝒫a×𝒫az=𝒫z×𝒫z
25 24 eqcomi 𝒫z×𝒫z=aV𝒫a×𝒫az
26 25 a1i x=y𝒫z×𝒫z=aV𝒫a×𝒫az
27 3 26 cbvralv2 x𝒫z×𝒫zψyaV𝒫a×𝒫azχ
28 16 27 sylib φyzχyaV𝒫a×𝒫azχ
29 28 ex φyzχyaV𝒫a×𝒫azχ
30 29 alrimiv φzyzχyaV𝒫a×𝒫azχ
31 6 4 30 setis φAPgθ