Metamath Proof Explorer


Theorem pgn4cyclex

Description: A cycle in a Petersen graph does not have length 4. (Contributed by AV, 9-Nov-2025)

Ref Expression
Hypothesis pgn4cyclex.g No typesetting found for |- G = ( 5 gPetersenGr 2 ) with typecode |-
Assertion pgn4cyclex F Cycles G P F 4

Proof

Step Hyp Ref Expression
1 pgn4cyclex.g Could not format G = ( 5 gPetersenGr 2 ) : No typesetting found for |- G = ( 5 gPetersenGr 2 ) with typecode |-
2 pgjsgr Could not format ( 5 gPetersenGr 2 ) e. USGraph : No typesetting found for |- ( 5 gPetersenGr 2 ) e. USGraph with typecode |-
3 1 2 eqeltri G USGraph
4 usgrupgr G USGraph G UPGraph
5 3 4 ax-mp G UPGraph
6 eqid Vtx G = Vtx G
7 eqid Edg G = Edg G
8 6 7 upgr4cycl4dv4e G UPGraph F Cycles G P F = 4 a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d
9 5 8 mp3an1 F Cycles G P F = 4 a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d
10 7 nbusgreledg G USGraph a G NeighbVtx b a b Edg G
11 10 bicomd G USGraph a b Edg G a G NeighbVtx b
12 3 11 ax-mp a b Edg G a G NeighbVtx b
13 12 biimpi a b Edg G a G NeighbVtx b
14 13 ad3antrrr a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d a G NeighbVtx b
15 prcom b c = c b
16 15 eleq1i b c Edg G c b Edg G
17 16 biimpi b c Edg G c b Edg G
18 7 nbusgreledg G USGraph c G NeighbVtx b c b Edg G
19 3 18 ax-mp c G NeighbVtx b c b Edg G
20 17 19 sylibr b c Edg G c G NeighbVtx b
21 20 ad3antlr a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d c G NeighbVtx b
22 simprl2 a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d a c
23 22 adantl a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d a c
24 eqid G NeighbVtx b = G NeighbVtx b
25 1 6 7 24 pgnbgreunbgr a G NeighbVtx b c G NeighbVtx b a c ∃! x Vtx G a x x c Edg G
26 14 21 23 25 syl2an23an a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d ∃! x Vtx G a x x c Edg G
27 simpll a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d a b Edg G b c Edg G
28 simplr a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d c d Edg G d a Edg G
29 simpr a Vtx G b Vtx G b Vtx G
30 simpr c Vtx G d Vtx G d Vtx G
31 29 30 anim12i a Vtx G b Vtx G c Vtx G d Vtx G b Vtx G d Vtx G
32 simprr2 a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d b d
33 31 32 anim12i a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d b Vtx G d Vtx G b d
34 df-3an b Vtx G d Vtx G b d b Vtx G d Vtx G b d
35 33 34 sylibr a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d b Vtx G d Vtx G b d
36 4cycl2vnunb a b Edg G b c Edg G c d Edg G d a Edg G b Vtx G d Vtx G b d ¬ ∃! x Vtx G a x x c Edg G
37 27 28 35 36 syl2an23an a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d ¬ ∃! x Vtx G a x x c Edg G
38 26 37 pm2.21dd a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d F 4
39 38 ex a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d F 4
40 39 rexlimdvva a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d F 4
41 40 rexlimivv a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d F 4
42 9 41 syl F Cycles G P F = 4 F 4
43 42 ex F Cycles G P F = 4 F 4
44 neqne ¬ F = 4 F 4
45 43 44 pm2.61d1 F Cycles G P F 4