Metamath Proof Explorer


Theorem phpeqd

Description: Corollary of the Pigeonhole Principle using equality. Strengthening of php expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023) Avoid ax-pow. (Revised by BTernaryTau, 28-Nov-2024)

Ref Expression
Hypotheses phpeqd.1 φAFin
phpeqd.2 φBA
phpeqd.3 φAB
Assertion phpeqd φA=B

Proof

Step Hyp Ref Expression
1 phpeqd.1 φAFin
2 phpeqd.2 φBA
3 phpeqd.3 φAB
4 2 adantr φ¬A=BBA
5 simpr φ¬A=B¬A=B
6 5 neqcomd φ¬A=B¬B=A
7 dfpss2 BABA¬B=A
8 4 6 7 sylanbrc φ¬A=BBA
9 php3 AFinBABA
10 1 8 9 syl2an2r φ¬A=BBA
11 sdomnen BA¬BA
12 ensymfib AFinABBA
13 12 notbid AFin¬AB¬BA
14 13 biimpar AFin¬BA¬AB
15 1 11 14 syl2an φBA¬AB
16 10 15 syldan φ¬A=B¬AB
17 16 ex φ¬A=B¬AB
18 3 17 mt4d φA=B