Metamath Proof Explorer


Theorem phpeqd

Description: Corollary of the Pigeonhole Principle using equality. Strengthening of php expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023) Avoid ax-pow. (Revised by BTernaryTau, 28-Nov-2024)

Ref Expression
Hypotheses phpeqd.1 φ A Fin
phpeqd.2 φ B A
phpeqd.3 φ A B
Assertion phpeqd φ A = B

Proof

Step Hyp Ref Expression
1 phpeqd.1 φ A Fin
2 phpeqd.2 φ B A
3 phpeqd.3 φ A B
4 2 adantr φ ¬ A = B B A
5 simpr φ ¬ A = B ¬ A = B
6 5 neqcomd φ ¬ A = B ¬ B = A
7 dfpss2 B A B A ¬ B = A
8 4 6 7 sylanbrc φ ¬ A = B B A
9 php3 A Fin B A B A
10 1 8 9 syl2an2r φ ¬ A = B B A
11 sdomnen B A ¬ B A
12 ensymfib A Fin A B B A
13 12 notbid A Fin ¬ A B ¬ B A
14 13 biimpar A Fin ¬ B A ¬ A B
15 1 11 14 syl2an φ B A ¬ A B
16 10 15 syldan φ ¬ A = B ¬ A B
17 16 ex φ ¬ A = B ¬ A B
18 3 17 mt4d φ A = B