Metamath Proof Explorer


Theorem pi1xfrgim

Description: The mapping G between fundamental groups is an isomorphism. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses pi1xfr.p P=Jπ1F0
pi1xfr.q Q=Jπ1F1
pi1xfr.b B=BaseP
pi1xfr.g G=rangBgphJI*𝑝Jg*𝑝JFphJ
pi1xfr.j φJTopOnX
pi1xfr.f φFIICnJ
pi1xfr.i I=x01F1x
Assertion pi1xfrgim φGPGrpIsoQ

Proof

Step Hyp Ref Expression
1 pi1xfr.p P=Jπ1F0
2 pi1xfr.q Q=Jπ1F1
3 pi1xfr.b B=BaseP
4 pi1xfr.g G=rangBgphJI*𝑝Jg*𝑝JFphJ
5 pi1xfr.j φJTopOnX
6 pi1xfr.f φFIICnJ
7 pi1xfr.i I=x01F1x
8 1 2 3 4 5 6 7 pi1xfr φGPGrpHomQ
9 eqid ranyBaseQyphJF*𝑝Jy*𝑝JIphJ=ranyBaseQyphJF*𝑝Jy*𝑝JIphJ
10 1 2 3 4 5 6 7 9 pi1xfrcnv φG-1=ranyBaseQyphJF*𝑝Jy*𝑝JIphJG-1QGrpHomP
11 10 simprd φG-1QGrpHomP
12 isgim2 GPGrpIsoQGPGrpHomQG-1QGrpHomP
13 8 11 12 sylanbrc φGPGrpIsoQ