Description: Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pj1eu.a | |
|
pj1eu.s | |
||
pj1eu.o | |
||
pj1eu.z | |
||
pj1eu.2 | |
||
pj1eu.3 | |
||
pj1eu.4 | |
||
pj1eu.5 | |
||
pj1f.p | |
||
pj1eq.5 | |
||
pj1eq.6 | |
||
pj1eq.7 | |
||
Assertion | pj1eq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1eu.a | |
|
2 | pj1eu.s | |
|
3 | pj1eu.o | |
|
4 | pj1eu.z | |
|
5 | pj1eu.2 | |
|
6 | pj1eu.3 | |
|
7 | pj1eu.4 | |
|
8 | pj1eu.5 | |
|
9 | pj1f.p | |
|
10 | pj1eq.5 | |
|
11 | pj1eq.6 | |
|
12 | pj1eq.7 | |
|
13 | 1 2 3 4 5 6 7 8 9 | pj1id | |
14 | 10 13 | mpdan | |
15 | 14 | eqeq1d | |
16 | 1 2 3 4 5 6 7 8 9 | pj1f | |
17 | 16 10 | ffvelcdmd | |
18 | 1 2 3 4 5 6 7 8 9 | pj2f | |
19 | 18 10 | ffvelcdmd | |
20 | 1 3 4 5 6 7 8 17 11 19 12 | subgdisjb | |
21 | 15 20 | bitrd | |