Metamath Proof Explorer


Theorem pj1f

Description: The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses pj1eu.a +˙=+G
pj1eu.s ˙=LSSumG
pj1eu.o 0˙=0G
pj1eu.z Z=CntzG
pj1eu.2 φTSubGrpG
pj1eu.3 φUSubGrpG
pj1eu.4 φTU=0˙
pj1eu.5 φTZU
pj1f.p P=proj1G
Assertion pj1f φTPU:T˙UT

Proof

Step Hyp Ref Expression
1 pj1eu.a +˙=+G
2 pj1eu.s ˙=LSSumG
3 pj1eu.o 0˙=0G
4 pj1eu.z Z=CntzG
5 pj1eu.2 φTSubGrpG
6 pj1eu.3 φUSubGrpG
7 pj1eu.4 φTU=0˙
8 pj1eu.5 φTZU
9 pj1f.p P=proj1G
10 subgrcl TSubGrpGGGrp
11 5 10 syl φGGrp
12 eqid BaseG=BaseG
13 12 subgss TSubGrpGTBaseG
14 5 13 syl φTBaseG
15 12 subgss USubGrpGUBaseG
16 6 15 syl φUBaseG
17 12 1 2 9 pj1fval GGrpTBaseGUBaseGTPU=zT˙UιxT|yUz=x+˙y
18 11 14 16 17 syl3anc φTPU=zT˙UιxT|yUz=x+˙y
19 1 2 3 4 5 6 7 8 pj1eu φzT˙U∃!xTyUz=x+˙y
20 riotacl ∃!xTyUz=x+˙yιxT|yUz=x+˙yT
21 19 20 syl φzT˙UιxT|yUz=x+˙yT
22 18 21 fmpt3d φTPU:T˙UT