Metamath Proof Explorer


Theorem pj2f

Description: The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses pj1eu.a +˙=+G
pj1eu.s ˙=LSSumG
pj1eu.o 0˙=0G
pj1eu.z Z=CntzG
pj1eu.2 φTSubGrpG
pj1eu.3 φUSubGrpG
pj1eu.4 φTU=0˙
pj1eu.5 φTZU
pj1f.p P=proj1G
Assertion pj2f φUPT:T˙UU

Proof

Step Hyp Ref Expression
1 pj1eu.a +˙=+G
2 pj1eu.s ˙=LSSumG
3 pj1eu.o 0˙=0G
4 pj1eu.z Z=CntzG
5 pj1eu.2 φTSubGrpG
6 pj1eu.3 φUSubGrpG
7 pj1eu.4 φTU=0˙
8 pj1eu.5 φTZU
9 pj1f.p P=proj1G
10 incom UT=TU
11 10 7 eqtrid φUT=0˙
12 4 5 6 8 cntzrecd φUZT
13 1 2 3 4 6 5 11 12 9 pj1f φUPT:U˙TU
14 2 4 lsmcom2 TSubGrpGUSubGrpGTZUT˙U=U˙T
15 5 6 8 14 syl3anc φT˙U=U˙T
16 15 feq2d φUPT:T˙UUUPT:U˙TU
17 13 16 mpbird φUPT:T˙UU