Metamath Proof Explorer


Theorem pjoc1i

Description: Projection of a vector in the orthocomplement of the projection subspace. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjop.1 HC
pjop.2 A
Assertion pjoc1i AHprojHA=0

Proof

Step Hyp Ref Expression
1 pjop.1 HC
2 pjop.2 A
3 1 2 pjopi projHA=A-projHA
4 1 chshii HS
5 1 2 pjclii projHAH
6 shsubcl HSAHprojHAHA-projHAH
7 4 5 6 mp3an13 AHA-projHAH
8 3 7 eqeltrid AHprojHAH
9 1 choccli HC
10 9 2 pjclii projHAH
11 8 10 jctir AHprojHAHprojHAH
12 elin projHAHHprojHAHprojHAH
13 11 12 sylibr AHprojHAHH
14 ocin HSHH=0
15 4 14 ax-mp HH=0
16 13 15 eleqtrdi AHprojHA0
17 elch0 projHA0projHA=0
18 16 17 sylib AHprojHA=0
19 1 2 pjpji A=projHA+projHA
20 oveq2 projHA=0projHA+projHA=projHA+0
21 19 20 eqtrid projHA=0A=projHA+0
22 1 2 pjhclii projHA
23 ax-hvaddid projHAprojHA+0=projHA
24 22 23 ax-mp projHA+0=projHA
25 21 24 eqtrdi projHA=0A=projHA
26 25 5 eqeltrdi projHA=0AH
27 18 26 impbii AHprojHA=0