Metamath Proof Explorer


Theorem ply1coefsupp

Description: The decomposition of a univariate polynomial is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019)

Ref Expression
Hypotheses ply1coefsupp.p P = Poly 1 R
ply1coefsupp.x X = var 1 R
ply1coefsupp.b B = Base P
ply1coefsupp.n · ˙ = P
ply1coefsupp.m M = mulGrp P
ply1coefsupp.e × ˙ = M
ply1coefsupp.a A = coe 1 K
Assertion ply1coefsupp R Ring K B finSupp 0 P k 0 A k · ˙ k × ˙ X

Proof

Step Hyp Ref Expression
1 ply1coefsupp.p P = Poly 1 R
2 ply1coefsupp.x X = var 1 R
3 ply1coefsupp.b B = Base P
4 ply1coefsupp.n · ˙ = P
5 ply1coefsupp.m M = mulGrp P
6 ply1coefsupp.e × ˙ = M
7 ply1coefsupp.a A = coe 1 K
8 eqid Scalar P = Scalar P
9 1 ply1lmod R Ring P LMod
10 9 adantr R Ring K B P LMod
11 nn0ex 0 V
12 11 a1i R Ring K B 0 V
13 1 ply1ring R Ring P Ring
14 5 ringmgp P Ring M Mnd
15 13 14 syl R Ring M Mnd
16 15 ad2antrr R Ring K B k 0 M Mnd
17 simpr R Ring K B k 0 k 0
18 2 1 3 vr1cl R Ring X B
19 18 ad2antrr R Ring K B k 0 X B
20 5 3 mgpbas B = Base M
21 20 6 mulgnn0cl M Mnd k 0 X B k × ˙ X B
22 16 17 19 21 syl3anc R Ring K B k 0 k × ˙ X B
23 eqid Base R = Base R
24 7 3 1 23 coe1f K B A : 0 Base R
25 24 adantl R Ring K B A : 0 Base R
26 eqid 0 R = 0 R
27 7 3 1 26 coe1sfi K B finSupp 0 R A
28 27 adantl R Ring K B finSupp 0 R A
29 1 ply1sca R Ring R = Scalar P
30 29 eqcomd R Ring Scalar P = R
31 30 adantr R Ring K B Scalar P = R
32 31 fveq2d R Ring K B 0 Scalar P = 0 R
33 28 32 breqtrrd R Ring K B finSupp 0 Scalar P A
34 3 8 4 10 12 22 25 33 mptscmfsuppd R Ring K B finSupp 0 P k 0 A k · ˙ k × ˙ X