Description: Two monomials are equal iff their powers are equal. (Contributed by Thierry Arnoux, 20-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1moneq.p | |
|
ply1moneq.x | |
||
ply1moneq.e | |
||
ply1moneq.r | |
||
ply1moneq.m | |
||
ply1moneq.n | |
||
Assertion | ply1moneq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1moneq.p | |
|
2 | ply1moneq.x | |
|
3 | ply1moneq.e | |
|
4 | ply1moneq.r | |
|
5 | ply1moneq.m | |
|
6 | ply1moneq.n | |
|
7 | nzrring | |
|
8 | 4 7 | syl | |
9 | eqid | |
|
10 | eqid | |
|
11 | 1 2 3 8 5 9 10 | coe1mon | |
12 | fvexd | |
|
13 | fvexd | |
|
14 | 12 13 | ifcld | |
15 | 11 14 | fvmpt2d | |
16 | 1 2 3 8 6 9 10 | coe1mon | |
17 | 12 13 | ifcld | |
18 | 16 17 | fvmpt2d | |
19 | 15 18 | eqeq12d | |
20 | 10 9 | nzrnz | |
21 | 4 20 | syl | |
22 | 21 | adantr | |
23 | ifnebib | |
|
24 | 22 23 | syl | |
25 | 19 24 | bitrd | |
26 | 25 | ralbidva | |
27 | eqid | |
|
28 | eqid | |
|
29 | 1 2 27 3 28 | ply1moncl | |
30 | 8 5 29 | syl2anc | |
31 | 1 2 27 3 28 | ply1moncl | |
32 | 8 6 31 | syl2anc | |
33 | eqid | |
|
34 | eqid | |
|
35 | 1 28 33 34 | ply1coe1eq | |
36 | 8 30 32 35 | syl3anc | |
37 | 5 6 | eqelbid | |
38 | 26 36 37 | 3bitr3d | |