Metamath Proof Explorer


Theorem ply1tmcl

Description: Closure of the expression for a univariate polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 25-Nov-2019)

Ref Expression
Hypotheses ply1tmcl.k K=BaseR
ply1tmcl.p P=Poly1R
ply1tmcl.x X=var1R
ply1tmcl.m ·˙=P
ply1tmcl.n N=mulGrpP
ply1tmcl.e ×˙=N
ply1tmcl.b B=BaseP
Assertion ply1tmcl RRingCKD0C·˙D×˙XB

Proof

Step Hyp Ref Expression
1 ply1tmcl.k K=BaseR
2 ply1tmcl.p P=Poly1R
3 ply1tmcl.x X=var1R
4 ply1tmcl.m ·˙=P
5 ply1tmcl.n N=mulGrpP
6 ply1tmcl.e ×˙=N
7 ply1tmcl.b B=BaseP
8 2 ply1lmod RRingPLMod
9 8 3ad2ant1 RRingCKD0PLMod
10 simp2 RRingCKD0CK
11 2 3 5 6 7 ply1moncl RRingD0D×˙XB
12 11 3adant2 RRingCKD0D×˙XB
13 2 ply1sca2 IR=ScalarP
14 baseid Base=SlotBasendx
15 14 1 strfvi K=BaseIR
16 7 13 4 15 lmodvscl PLModCKD×˙XBC·˙D×˙XB
17 9 10 12 16 syl3anc RRingCKD0C·˙D×˙XB