Metamath Proof Explorer


Theorem ply1vr1smo

Description: The variable in a polynomial expressed as scaled monomial. (Contributed by AV, 12-Aug-2019)

Ref Expression
Hypotheses ply1vr1smo.p P = Poly 1 R
ply1vr1smo.i 1 ˙ = 1 R
ply1vr1smo.t · ˙ = P
ply1vr1smo.m G = mulGrp P
ply1vr1smo.e × ˙ = G
ply1vr1smo.x X = var 1 R
Assertion ply1vr1smo R Ring 1 ˙ · ˙ 1 × ˙ X = X

Proof

Step Hyp Ref Expression
1 ply1vr1smo.p P = Poly 1 R
2 ply1vr1smo.i 1 ˙ = 1 R
3 ply1vr1smo.t · ˙ = P
4 ply1vr1smo.m G = mulGrp P
5 ply1vr1smo.e × ˙ = G
6 ply1vr1smo.x X = var 1 R
7 1 ply1sca R Ring R = Scalar P
8 7 fveq2d R Ring 1 R = 1 Scalar P
9 2 8 syl5eq R Ring 1 ˙ = 1 Scalar P
10 9 oveq1d R Ring 1 ˙ · ˙ 1 × ˙ X = 1 Scalar P · ˙ 1 × ˙ X
11 1 ply1lmod R Ring P LMod
12 eqid Base P = Base P
13 6 1 12 vr1cl R Ring X Base P
14 4 12 mgpbas Base P = Base G
15 14 5 mulg1 X Base P 1 × ˙ X = X
16 13 15 syl R Ring 1 × ˙ X = X
17 16 13 eqeltrd R Ring 1 × ˙ X Base P
18 eqid Scalar P = Scalar P
19 eqid 1 Scalar P = 1 Scalar P
20 12 18 3 19 lmodvs1 P LMod 1 × ˙ X Base P 1 Scalar P · ˙ 1 × ˙ X = 1 × ˙ X
21 11 17 20 syl2anc R Ring 1 Scalar P · ˙ 1 × ˙ X = 1 × ˙ X
22 10 21 16 3eqtrd R Ring 1 ˙ · ˙ 1 × ˙ X = X