Metamath Proof Explorer


Theorem pm2mpf

Description: The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P=Poly1R
pm2mpval.c C=NMatP
pm2mpval.b B=BaseC
pm2mpval.m ˙=Q
pm2mpval.e ×˙=mulGrpQ
pm2mpval.x X=var1A
pm2mpval.a A=NMatR
pm2mpval.q Q=Poly1A
pm2mpval.t T=NpMatToMatPolyR
pm2mpcl.l L=BaseQ
Assertion pm2mpf NFinRRingT:BL

Proof

Step Hyp Ref Expression
1 pm2mpval.p P=Poly1R
2 pm2mpval.c C=NMatP
3 pm2mpval.b B=BaseC
4 pm2mpval.m ˙=Q
5 pm2mpval.e ×˙=mulGrpQ
6 pm2mpval.x X=var1A
7 pm2mpval.a A=NMatR
8 pm2mpval.q Q=Poly1A
9 pm2mpval.t T=NpMatToMatPolyR
10 pm2mpcl.l L=BaseQ
11 ovexd NFinRRingmBQk0mdecompPMatk˙k×˙XV
12 1 2 3 4 5 6 7 8 9 pm2mpval NFinRRingT=mBQk0mdecompPMatk˙k×˙X
13 1 2 3 4 5 6 7 8 9 10 pm2mpcl NFinRRingbBTbL
14 13 3expa NFinRRingbBTbL
15 11 12 14 fmpt2d NFinRRingT:BL