Description: Lemma 3 for pmtrdifel . (Contributed by AV, 15-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmtrdifel.t | |
|
pmtrdifel.r | |
||
pmtrdifel.0 | |
||
Assertion | pmtrdifellem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrdifel.t | |
|
2 | pmtrdifel.r | |
|
3 | pmtrdifel.0 | |
|
4 | 1 2 3 | pmtrdifellem2 | |
5 | 4 | adantr | |
6 | 5 | eleq2d | |
7 | 4 | difeq1d | |
8 | 7 | unieqd | |
9 | 8 | adantr | |
10 | 6 9 | ifbieq1d | |
11 | 1 2 3 | pmtrdifellem1 | |
12 | eldifi | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 13 2 14 | pmtrffv | |
16 | 11 12 15 | syl2an | |
17 | eqid | |
|
18 | eqid | |
|
19 | 17 1 18 | pmtrffv | |
20 | 10 16 19 | 3eqtr4rd | |
21 | 20 | ralrimiva | |