Metamath Proof Explorer


Theorem pmtrdifellem3

Description: Lemma 3 for pmtrdifel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T=ranpmTrspNK
pmtrdifel.r R=ranpmTrspN
pmtrdifel.0 S=pmTrspNdomQI
Assertion pmtrdifellem3 QTxNKQx=Sx

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T=ranpmTrspNK
2 pmtrdifel.r R=ranpmTrspN
3 pmtrdifel.0 S=pmTrspNdomQI
4 1 2 3 pmtrdifellem2 QTdomSI=domQI
5 4 adantr QTxNKdomSI=domQI
6 5 eleq2d QTxNKxdomSIxdomQI
7 4 difeq1d QTdomSIx=domQIx
8 7 unieqd QTdomSIx=domQIx
9 8 adantr QTxNKdomSIx=domQIx
10 6 9 ifbieq1d QTxNKifxdomSIdomSIxx=ifxdomQIdomQIxx
11 1 2 3 pmtrdifellem1 QTSR
12 eldifi xNKxN
13 eqid pmTrspN=pmTrspN
14 eqid domSI=domSI
15 13 2 14 pmtrffv SRxNSx=ifxdomSIdomSIxx
16 11 12 15 syl2an QTxNKSx=ifxdomSIdomSIxx
17 eqid pmTrspNK=pmTrspNK
18 eqid domQI=domQI
19 17 1 18 pmtrffv QTxNKQx=ifxdomQIdomQIxx
20 10 16 19 3eqtr4rd QTxNKQx=Sx
21 20 ralrimiva QTxNKQx=Sx