Metamath Proof Explorer


Theorem pmtridf1o

Description: Transpositions of X and Y (understood to be the identity when X = Y ), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses pmtridf1o.a φ A V
pmtridf1o.x φ X A
pmtridf1o.y φ Y A
pmtridf1o.t T = if X = Y I A pmTrsp A X Y
Assertion pmtridf1o φ T : A 1-1 onto A

Proof

Step Hyp Ref Expression
1 pmtridf1o.a φ A V
2 pmtridf1o.x φ X A
3 pmtridf1o.y φ Y A
4 pmtridf1o.t T = if X = Y I A pmTrsp A X Y
5 iftrue X = Y if X = Y I A pmTrsp A X Y = I A
6 5 adantl φ X = Y if X = Y I A pmTrsp A X Y = I A
7 4 6 eqtrid φ X = Y T = I A
8 f1oi I A : A 1-1 onto A
9 8 a1i φ X = Y I A : A 1-1 onto A
10 f1oeq1 T = I A T : A 1-1 onto A I A : A 1-1 onto A
11 10 biimpar T = I A I A : A 1-1 onto A T : A 1-1 onto A
12 7 9 11 syl2anc φ X = Y T : A 1-1 onto A
13 simpr φ X Y X Y
14 13 neneqd φ X Y ¬ X = Y
15 iffalse ¬ X = Y if X = Y I A pmTrsp A X Y = pmTrsp A X Y
16 14 15 syl φ X Y if X = Y I A pmTrsp A X Y = pmTrsp A X Y
17 4 16 eqtrid φ X Y T = pmTrsp A X Y
18 1 adantr φ X Y A V
19 2 adantr φ X Y X A
20 3 adantr φ X Y Y A
21 19 20 prssd φ X Y X Y A
22 pr2nelem X A Y A X Y X Y 2 𝑜
23 19 20 13 22 syl3anc φ X Y X Y 2 𝑜
24 eqid pmTrsp A = pmTrsp A
25 eqid ran pmTrsp A = ran pmTrsp A
26 24 25 pmtrrn A V X Y A X Y 2 𝑜 pmTrsp A X Y ran pmTrsp A
27 18 21 23 26 syl3anc φ X Y pmTrsp A X Y ran pmTrsp A
28 17 27 eqeltrd φ X Y T ran pmTrsp A
29 24 25 pmtrff1o T ran pmTrsp A T : A 1-1 onto A
30 28 29 syl φ X Y T : A 1-1 onto A
31 12 30 pm2.61dane φ T : A 1-1 onto A