Description: Transpositions of X and Y (understood to be the identity when X = Y ), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmtridf1o.a | |
|
pmtridf1o.x | |
||
pmtridf1o.y | |
||
pmtridf1o.t | |
||
Assertion | pmtridf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtridf1o.a | |
|
2 | pmtridf1o.x | |
|
3 | pmtridf1o.y | |
|
4 | pmtridf1o.t | |
|
5 | iftrue | |
|
6 | 5 | adantl | |
7 | 4 6 | eqtrid | |
8 | f1oi | |
|
9 | 8 | a1i | |
10 | f1oeq1 | |
|
11 | 10 | biimpar | |
12 | 7 9 11 | syl2anc | |
13 | simpr | |
|
14 | 13 | neneqd | |
15 | iffalse | |
|
16 | 14 15 | syl | |
17 | 4 16 | eqtrid | |
18 | 1 | adantr | |
19 | 2 | adantr | |
20 | 3 | adantr | |
21 | 19 20 | prssd | |
22 | enpr2 | |
|
23 | 19 20 13 22 | syl3anc | |
24 | eqid | |
|
25 | eqid | |
|
26 | 24 25 | pmtrrn | |
27 | 18 21 23 26 | syl3anc | |
28 | 17 27 | eqeltrd | |
29 | 24 25 | pmtrff1o | |
30 | 28 29 | syl | |
31 | 12 30 | pm2.61dane | |