Metamath Proof Explorer


Theorem pmtridf1o

Description: Transpositions of X and Y (understood to be the identity when X = Y ), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses pmtridf1o.a φAV
pmtridf1o.x φXA
pmtridf1o.y φYA
pmtridf1o.t T=ifX=YIApmTrspAXY
Assertion pmtridf1o φT:A1-1 ontoA

Proof

Step Hyp Ref Expression
1 pmtridf1o.a φAV
2 pmtridf1o.x φXA
3 pmtridf1o.y φYA
4 pmtridf1o.t T=ifX=YIApmTrspAXY
5 iftrue X=YifX=YIApmTrspAXY=IA
6 5 adantl φX=YifX=YIApmTrspAXY=IA
7 4 6 eqtrid φX=YT=IA
8 f1oi IA:A1-1 ontoA
9 8 a1i φX=YIA:A1-1 ontoA
10 f1oeq1 T=IAT:A1-1 ontoAIA:A1-1 ontoA
11 10 biimpar T=IAIA:A1-1 ontoAT:A1-1 ontoA
12 7 9 11 syl2anc φX=YT:A1-1 ontoA
13 simpr φXYXY
14 13 neneqd φXY¬X=Y
15 iffalse ¬X=YifX=YIApmTrspAXY=pmTrspAXY
16 14 15 syl φXYifX=YIApmTrspAXY=pmTrspAXY
17 4 16 eqtrid φXYT=pmTrspAXY
18 1 adantr φXYAV
19 2 adantr φXYXA
20 3 adantr φXYYA
21 19 20 prssd φXYXYA
22 enpr2 XAYAXYXY2𝑜
23 19 20 13 22 syl3anc φXYXY2𝑜
24 eqid pmTrspA=pmTrspA
25 eqid ranpmTrspA=ranpmTrspA
26 24 25 pmtrrn AVXYAXY2𝑜pmTrspAXYranpmTrspA
27 18 21 23 26 syl3anc φXYpmTrspAXYranpmTrspA
28 17 27 eqeltrd φXYTranpmTrspA
29 24 25 pmtrff1o TranpmTrspAT:A1-1 ontoA
30 28 29 syl φXYT:A1-1 ontoA
31 12 30 pm2.61dane φT:A1-1 ontoA