Metamath Proof Explorer


Theorem pmtrprfv3

Description: In a transposition of two given points, all other points are mapped to themselves. (Contributed by AV, 17-Mar-2019)

Ref Expression
Hypothesis pmtrfval.t T=pmTrspD
Assertion pmtrprfv3 DVXDYDZDXYXZYZTXYZ=Z

Proof

Step Hyp Ref Expression
1 pmtrfval.t T=pmTrspD
2 simp1 DVXDYDZDXYXZYZDV
3 simp1 XDYDZDXD
4 3 3ad2ant2 DVXDYDZDXYXZYZXD
5 simp22 DVXDYDZDXYXZYZYD
6 4 5 prssd DVXDYDZDXYXZYZXYD
7 enpr2 XDYDXYXY2𝑜
8 7 3expia XDYDXYXY2𝑜
9 8 3adant3 XDYDZDXYXY2𝑜
10 9 com12 XYXDYDZDXY2𝑜
11 10 3ad2ant1 XYXZYZXDYDZDXY2𝑜
12 11 impcom XDYDZDXYXZYZXY2𝑜
13 12 3adant1 DVXDYDZDXYXZYZXY2𝑜
14 simp23 DVXDYDZDXYXZYZZD
15 1 pmtrfv DVXYDXY2𝑜ZDTXYZ=ifZXYXYZZ
16 2 6 13 14 15 syl31anc DVXDYDZDXYXZYZTXYZ=ifZXYXYZZ
17 necom XZZX
18 17 biimpi XZZX
19 18 3ad2ant2 XYXZYZZX
20 19 3ad2ant3 DVXDYDZDXYXZYZZX
21 necom YZZY
22 21 biimpi YZZY
23 22 3ad2ant3 XYXZYZZY
24 23 3ad2ant3 DVXDYDZDXYXZYZZY
25 20 24 nelprd DVXDYDZDXYXZYZ¬ZXY
26 25 iffalsed DVXDYDZDXYXZYZifZXYXYZZ=Z
27 16 26 eqtrd DVXDYDZDXYXZYZTXYZ=Z