Metamath Proof Explorer


Theorem pmtrsn

Description: The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for A e/ _V , i.e. for the empty set { A } = (/) resulting in ( pmTrsp(/) ) = (/) . (Contributed by AV, 6-Aug-2019)

Ref Expression
Assertion pmtrsn pmTrspA=

Proof

Step Hyp Ref Expression
1 snex AV
2 eqid pmTrspA=pmTrspA
3 2 pmtrfval AVpmTrspA=py𝒫A|y2𝑜zAifzppzz
4 1 3 ax-mp pmTrspA=py𝒫A|y2𝑜zAifzppzz
5 eqid py𝒫A|y2𝑜zAifzppzz=py𝒫A|y2𝑜zAifzppzz
6 5 dmmpt dompy𝒫A|y2𝑜zAifzppzz=py𝒫A|y2𝑜|zAifzppzzV
7 2on0 2𝑜
8 ensymb 2𝑜2𝑜
9 en0 2𝑜2𝑜=
10 8 9 bitri 2𝑜2𝑜=
11 7 10 nemtbir ¬2𝑜
12 snnen2o ¬A2𝑜
13 0ex V
14 breq1 y=y2𝑜2𝑜
15 14 notbid y=¬y2𝑜¬2𝑜
16 breq1 y=Ay2𝑜A2𝑜
17 16 notbid y=A¬y2𝑜¬A2𝑜
18 13 1 15 17 ralpr yA¬y2𝑜¬2𝑜¬A2𝑜
19 11 12 18 mpbir2an yA¬y2𝑜
20 pwsn 𝒫A=A
21 20 raleqi y𝒫A¬y2𝑜yA¬y2𝑜
22 19 21 mpbir y𝒫A¬y2𝑜
23 rabeq0 y𝒫A|y2𝑜=y𝒫A¬y2𝑜
24 22 23 mpbir y𝒫A|y2𝑜=
25 24 rabeqi py𝒫A|y2𝑜|zAifzppzzV=p|zAifzppzzV
26 rab0 p|zAifzppzzV=
27 6 25 26 3eqtri dompy𝒫A|y2𝑜zAifzppzz=
28 mptrel Relpy𝒫A|y2𝑜zAifzppzz
29 reldm0 Relpy𝒫A|y2𝑜zAifzppzzpy𝒫A|y2𝑜zAifzppzz=dompy𝒫A|y2𝑜zAifzppzz=
30 28 29 ax-mp py𝒫A|y2𝑜zAifzppzz=dompy𝒫A|y2𝑜zAifzppzz=
31 27 30 mpbir py𝒫A|y2𝑜zAifzppzz=
32 4 31 eqtri pmTrspA=