Metamath Proof Explorer


Theorem pntsval

Description: Define the "Selberg function", whose asymptotic behavior is the content of selberg . (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypothesis pntsval.1 S = a i = 1 a Λ i log i + ψ a i
Assertion pntsval A S A = n = 1 A Λ n log n + ψ A n

Proof

Step Hyp Ref Expression
1 pntsval.1 S = a i = 1 a Λ i log i + ψ a i
2 fveq2 i = n Λ i = Λ n
3 fveq2 i = n log i = log n
4 oveq2 i = n a i = a n
5 4 fveq2d i = n ψ a i = ψ a n
6 3 5 oveq12d i = n log i + ψ a i = log n + ψ a n
7 2 6 oveq12d i = n Λ i log i + ψ a i = Λ n log n + ψ a n
8 7 cbvsumv i = 1 a Λ i log i + ψ a i = n = 1 a Λ n log n + ψ a n
9 fveq2 a = A a = A
10 9 oveq2d a = A 1 a = 1 A
11 fvoveq1 a = A ψ a n = ψ A n
12 11 oveq2d a = A log n + ψ a n = log n + ψ A n
13 12 oveq2d a = A Λ n log n + ψ a n = Λ n log n + ψ A n
14 13 adantr a = A n 1 a Λ n log n + ψ a n = Λ n log n + ψ A n
15 10 14 sumeq12dv a = A n = 1 a Λ n log n + ψ a n = n = 1 A Λ n log n + ψ A n
16 8 15 eqtrid a = A i = 1 a Λ i log i + ψ a i = n = 1 A Λ n log n + ψ A n
17 sumex n = 1 A Λ n log n + ψ A n V
18 16 1 17 fvmpt A S A = n = 1 A Λ n log n + ψ A n