Metamath Proof Explorer


Theorem polid2i

Description: Generalized polarization identity. Generalization of Exercise 4(a) of ReedSimon p. 63. (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)

Ref Expression
Hypotheses polid2.1 A
polid2.2 B
polid2.3 C
polid2.4 D
Assertion polid2i AihB=A+CihD+B-A-CihD-B+iA+iCihD+iBA-iCihD-iB4

Proof

Step Hyp Ref Expression
1 polid2.1 A
2 polid2.2 B
3 polid2.3 C
4 polid2.4 D
5 4cn 4
6 1 2 hicli AihB
7 4ne0 40
8 2cn 2
9 3 4 hicli CihD
10 6 9 addcli AihB+CihD
11 6 9 subcli AihBCihD
12 8 10 11 adddii 2AihB+CihD+AihBCihD=2AihB+CihD+2AihBCihD
13 ppncan AihBCihDAihBAihB+CihD+AihBCihD=AihB+AihB
14 6 9 6 13 mp3an AihB+CihD+AihBCihD=AihB+AihB
15 6 2timesi 2AihB=AihB+AihB
16 14 15 eqtr4i AihB+CihD+AihBCihD=2AihB
17 16 oveq2i 2AihB+CihD+AihBCihD=22AihB
18 8 8 6 mulassi 22AihB=22AihB
19 2t2e4 22=4
20 19 oveq1i 22AihB=4AihB
21 17 18 20 3eqtr2ri 4AihB=2AihB+CihD+AihBCihD
22 1 4 hicli AihD
23 3 2 hicli CihB
24 22 23 addcli AihD+CihB
25 24 10 10 pnncani AihD+CihB+AihB+CihD-AihD+CihB-AihB+CihD=AihB+CihD+AihB+CihD
26 1 3 4 2 normlem8 A+CihD+B=AihD+CihB+AihB+CihD
27 1 3 4 2 normlem9 A-CihD-B=AihD+CihB-AihB+CihD
28 26 27 oveq12i A+CihD+BA-CihD-B=AihD+CihB+AihB+CihD-AihD+CihB-AihB+CihD
29 10 2timesi 2AihB+CihD=AihB+CihD+AihB+CihD
30 25 28 29 3eqtr4i A+CihD+BA-CihD-B=2AihB+CihD
31 ax-icn i
32 31 3 hvmulcli iC
33 31 2 hvmulcli iB
34 1 32 4 33 normlem8 A+iCihD+iB=AihD+iCihiB+AihiB+iCihD
35 1 32 4 33 normlem9 A-iCihD-iB=AihD+iCihiB-AihiB+iCihD
36 34 35 oveq12i A+iCihD+iBA-iCihD-iB=AihD+iCihiB+AihiB+iCihD-AihD+iCihiB-AihiB+iCihD
37 32 33 hicli iCihiB
38 22 37 addcli AihD+iCihiB
39 1 33 hicli AihiB
40 32 4 hicli iCihD
41 39 40 addcli AihiB+iCihD
42 38 41 41 pnncani AihD+iCihiB+AihiB+iCihD-AihD+iCihiB-AihiB+iCihD=AihiB+iCihD+AihiB+iCihD
43 41 2timesi 2AihiB+iCihD=AihiB+iCihD+AihiB+iCihD
44 his5 iABAihiB=iAihB
45 31 1 2 44 mp3an AihiB=iAihB
46 cji i=i
47 46 oveq1i iAihB=iAihB
48 45 47 eqtri AihiB=iAihB
49 ax-his3 iCDiCihD=iCihD
50 31 3 4 49 mp3an iCihD=iCihD
51 48 50 oveq12i AihiB+iCihD=iAihB+iCihD
52 51 oveq2i 2AihiB+iCihD=2iAihB+iCihD
53 43 52 eqtr3i AihiB+iCihD+AihiB+iCihD=2iAihB+iCihD
54 36 42 53 3eqtri A+iCihD+iBA-iCihD-iB=2iAihB+iCihD
55 54 oveq2i iA+iCihD+iBA-iCihD-iB=i2iAihB+iCihD
56 negicn i
57 56 6 mulcli iAihB
58 31 9 mulcli iCihD
59 57 58 addcli iAihB+iCihD
60 8 31 59 mul12i 2iiAihB+iCihD=i2iAihB+iCihD
61 31 57 58 adddii iiAihB+iCihD=iiAihB+iiCihD
62 31 31 mulneg2i ii=ii
63 ixi ii=1
64 63 negeqi ii=-1
65 negneg1e1 -1=1
66 62 64 65 3eqtri ii=1
67 66 oveq1i iiAihB=1AihB
68 31 56 6 mulassi iiAihB=iiAihB
69 6 mullidi 1AihB=AihB
70 67 68 69 3eqtr3i iiAihB=AihB
71 63 oveq1i iiCihD=-1CihD
72 31 31 9 mulassi iiCihD=iiCihD
73 9 mulm1i -1CihD=CihD
74 71 72 73 3eqtr3i iiCihD=CihD
75 70 74 oveq12i iiAihB+iiCihD=AihB+CihD
76 6 9 negsubi AihB+CihD=AihBCihD
77 61 75 76 3eqtri iiAihB+iCihD=AihBCihD
78 77 oveq2i 2iiAihB+iCihD=2AihBCihD
79 55 60 78 3eqtr2i iA+iCihD+iBA-iCihD-iB=2AihBCihD
80 30 79 oveq12i A+CihD+B-A-CihD-B+iA+iCihD+iBA-iCihD-iB=2AihB+CihD+2AihBCihD
81 12 21 80 3eqtr4i 4AihB=A+CihD+B-A-CihD-B+iA+iCihD+iBA-iCihD-iB
82 5 6 7 81 mvllmuli AihB=A+CihD+B-A-CihD-B+iA+iCihD+iBA-iCihD-iB4