Metamath Proof Explorer


Theorem poprelb

Description: Equality for unordered pairs with partially ordered elements. (Contributed by AV, 9-Jul-2023)

Ref Expression
Assertion poprelb RelRRPoXAXBXARBCRDAB=CDA=CB=D

Proof

Step Hyp Ref Expression
1 simp2 RelRRPoXAXBXARBCRDAXBX
2 an3 RelRRPoXARBCRDRelRCRD
3 2 3adant2 RelRRPoXAXBXARBCRDRelRCRD
4 brrelex12 RelRCRDCVDV
5 3 4 syl RelRRPoXAXBXARBCRDCVDV
6 preq12bg AXBXCVDVAB=CDA=CB=DA=DB=C
7 1 5 6 syl2anc RelRRPoXAXBXARBCRDAB=CDA=CB=DA=DB=C
8 idd RelRRPoXAXBXARBCRDA=CB=DA=CB=D
9 breq12 B=CA=DBRACRD
10 9 ancoms A=DB=CBRACRD
11 10 bicomd A=DB=CCRDBRA
12 11 anbi2d A=DB=CARBCRDARBBRA
13 po2nr RPoXAXBX¬ARBBRA
14 13 adantll RelRRPoXAXBX¬ARBBRA
15 14 pm2.21d RelRRPoXAXBXARBBRAA=CB=D
16 15 ex RelRRPoXAXBXARBBRAA=CB=D
17 16 com13 ARBBRAAXBXRelRRPoXA=CB=D
18 12 17 syl6bi A=DB=CARBCRDAXBXRelRRPoXA=CB=D
19 18 com23 A=DB=CAXBXARBCRDRelRRPoXA=CB=D
20 19 com14 RelRRPoXAXBXARBCRDA=DB=CA=CB=D
21 20 3imp RelRRPoXAXBXARBCRDA=DB=CA=CB=D
22 8 21 jaod RelRRPoXAXBXARBCRDA=CB=DA=DB=CA=CB=D
23 orc A=CB=DA=CB=DA=DB=C
24 22 23 impbid1 RelRRPoXAXBXARBCRDA=CB=DA=DB=CA=CB=D
25 7 24 bitrd RelRRPoXAXBXARBCRDAB=CDA=CB=D