Metamath Proof Explorer


Theorem posn

Description: Partial ordering of a singleton. (Contributed by NM, 27-Apr-2009) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion posn RelRRPoA¬ARA

Proof

Step Hyp Ref Expression
1 po0 RPo
2 snprc ¬AVA=
3 poeq2 A=RPoARPo
4 2 3 sylbi ¬AVRPoARPo
5 1 4 mpbiri ¬AVRPoA
6 5 adantl RelR¬AVRPoA
7 brrelex1 RelRARAAV
8 7 stoic1a RelR¬AV¬ARA
9 6 8 2thd RelR¬AVRPoA¬ARA
10 9 ex RelR¬AVRPoA¬ARA
11 df-po RPoAxAyAzA¬xRxxRyyRzxRz
12 breq2 z=AyRzyRA
13 12 anbi2d z=AxRyyRzxRyyRA
14 breq2 z=AxRzxRA
15 13 14 imbi12d z=AxRyyRzxRzxRyyRAxRA
16 15 anbi2d z=A¬xRxxRyyRzxRz¬xRxxRyyRAxRA
17 16 ralsng AVzA¬xRxxRyyRzxRz¬xRxxRyyRAxRA
18 17 ralbidv AVyAzA¬xRxxRyyRzxRzyA¬xRxxRyyRAxRA
19 simpl xRyyRAxRy
20 breq2 y=AxRyxRA
21 19 20 imbitrid y=AxRyyRAxRA
22 21 biantrud y=A¬xRx¬xRxxRyyRAxRA
23 22 bicomd y=A¬xRxxRyyRAxRA¬xRx
24 23 ralsng AVyA¬xRxxRyyRAxRA¬xRx
25 18 24 bitrd AVyAzA¬xRxxRyyRzxRz¬xRx
26 25 ralbidv AVxAyAzA¬xRxxRyyRzxRzxA¬xRx
27 breq12 x=Ax=AxRxARA
28 27 anidms x=AxRxARA
29 28 notbid x=A¬xRx¬ARA
30 29 ralsng AVxA¬xRx¬ARA
31 26 30 bitrd AVxAyAzA¬xRxxRyyRzxRz¬ARA
32 11 31 bitrid AVRPoA¬ARA
33 10 32 pm2.61d2 RelRRPoA¬ARA