Metamath Proof Explorer


Theorem prcdnq

Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of Gleason p. 121. (Contributed by NM, 25-Feb-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion prcdnq A𝑷BAC<𝑸BCA

Proof

Step Hyp Ref Expression
1 ltrelnq <𝑸𝑸×𝑸
2 relxp Rel𝑸×𝑸
3 relss <𝑸𝑸×𝑸Rel𝑸×𝑸Rel<𝑸
4 1 2 3 mp2 Rel<𝑸
5 4 brrelex1i C<𝑸BCV
6 eleq1 x=BxABA
7 6 anbi2d x=BA𝑷xAA𝑷BA
8 breq2 x=By<𝑸xy<𝑸B
9 7 8 anbi12d x=BA𝑷xAy<𝑸xA𝑷BAy<𝑸B
10 9 imbi1d x=BA𝑷xAy<𝑸xyAA𝑷BAy<𝑸ByA
11 breq1 y=Cy<𝑸BC<𝑸B
12 11 anbi2d y=CA𝑷BAy<𝑸BA𝑷BAC<𝑸B
13 eleq1 y=CyACA
14 12 13 imbi12d y=CA𝑷BAy<𝑸ByAA𝑷BAC<𝑸BCA
15 elnpi A𝑷AVAA𝑸xAyy<𝑸xyAyAx<𝑸y
16 15 simprbi A𝑷xAyy<𝑸xyAyAx<𝑸y
17 16 r19.21bi A𝑷xAyy<𝑸xyAyAx<𝑸y
18 17 simpld A𝑷xAyy<𝑸xyA
19 18 19.21bi A𝑷xAy<𝑸xyA
20 19 imp A𝑷xAy<𝑸xyA
21 10 14 20 vtocl2g BACVA𝑷BAC<𝑸BCA
22 5 21 sylan2 BAC<𝑸BA𝑷BAC<𝑸BCA
23 22 adantll A𝑷BAC<𝑸BA𝑷BAC<𝑸BCA
24 23 pm2.43i A𝑷BAC<𝑸BCA
25 24 ex A𝑷BAC<𝑸BCA