Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of Gleason p. 121. (Contributed by NM, 25-Feb-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | prcdnq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq | |
|
2 | relxp | |
|
3 | relss | |
|
4 | 1 2 3 | mp2 | |
5 | 4 | brrelex1i | |
6 | eleq1 | |
|
7 | 6 | anbi2d | |
8 | breq2 | |
|
9 | 7 8 | anbi12d | |
10 | 9 | imbi1d | |
11 | breq1 | |
|
12 | 11 | anbi2d | |
13 | eleq1 | |
|
14 | 12 13 | imbi12d | |
15 | elnpi | |
|
16 | 15 | simprbi | |
17 | 16 | r19.21bi | |
18 | 17 | simpld | |
19 | 18 | 19.21bi | |
20 | 19 | imp | |
21 | 10 14 20 | vtocl2g | |
22 | 5 21 | sylan2 | |
23 | 22 | adantll | |
24 | 23 | pm2.43i | |
25 | 24 | ex | |