Metamath Proof Explorer


Theorem prdsleval

Description: Value of the product ordering in a structure product. (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y=S𝑠R
prdsbasmpt.b B=BaseY
prdsbasmpt.s φSV
prdsbasmpt.i φIW
prdsbasmpt.r φRFnI
prdsplusgval.f φFB
prdsplusgval.g φGB
prdsleval.l ˙=Y
Assertion prdsleval φF˙GxIFxRxGx

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y=S𝑠R
2 prdsbasmpt.b B=BaseY
3 prdsbasmpt.s φSV
4 prdsbasmpt.i φIW
5 prdsbasmpt.r φRFnI
6 prdsplusgval.f φFB
7 prdsplusgval.g φGB
8 prdsleval.l ˙=Y
9 df-br F˙GFG˙
10 fnex RFnIIWRV
11 5 4 10 syl2anc φRV
12 5 fndmd φdomR=I
13 1 3 11 2 12 8 prdsle φ˙=fg|fgBxIfxRxgx
14 vex fV
15 vex gV
16 14 15 prss fBgBfgB
17 16 anbi1i fBgBxIfxRxgxfgBxIfxRxgx
18 17 opabbii fg|fBgBxIfxRxgx=fg|fgBxIfxRxgx
19 13 18 eqtr4di φ˙=fg|fBgBxIfxRxgx
20 19 eleq2d φFG˙FGfg|fBgBxIfxRxgx
21 9 20 bitrid φF˙GFGfg|fBgBxIfxRxgx
22 fveq1 f=Ffx=Fx
23 fveq1 g=Ggx=Gx
24 22 23 breqan12d f=Fg=GfxRxgxFxRxGx
25 24 ralbidv f=Fg=GxIfxRxgxxIFxRxGx
26 25 opelopab2a FBGBFGfg|fBgBxIfxRxgxxIFxRxGx
27 6 7 26 syl2anc φFGfg|fBgBxIfxRxgxxIFxRxGx
28 21 27 bitrd φF˙GxIFxRxGx