Metamath Proof Explorer


Theorem preimalegt

Description: The preimage of a left-open, unbounded above interval, is the complement of a right-closed unbounded below interval. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimalegt.x xφ
preimalegt.b φxAB*
preimalegt.c φC*
Assertion preimalegt φAxA|BC=xA|C<B

Proof

Step Hyp Ref Expression
1 preimalegt.x xφ
2 preimalegt.b φxAB*
3 preimalegt.c φC*
4 nfcv _xA
5 nfrab1 _xxA|BC
6 4 5 nfdif _xAxA|BC
7 nfrab1 _xxA|C<B
8 eldifi xAxA|BCxA
9 8 adantl φxAxA|BCxA
10 eldifn xAxA|BC¬xxA|BC
11 8 anim1i xAxA|BCBCxABC
12 rabid xxA|BCxABC
13 11 12 sylibr xAxA|BCBCxxA|BC
14 10 13 mtand xAxA|BC¬BC
15 14 adantl φxAxA|BC¬BC
16 3 adantr φxAxA|BCC*
17 8 2 sylan2 φxAxA|BCB*
18 16 17 xrltnled φxAxA|BCC<B¬BC
19 15 18 mpbird φxAxA|BCC<B
20 rabid xxA|C<BxAC<B
21 9 19 20 sylanbrc φxAxA|BCxxA|C<B
22 rabidim1 xxA|C<BxA
23 22 adantl φxxA|C<BxA
24 rabidim2 xxA|C<BC<B
25 24 adantl φxxA|C<BC<B
26 3 adantr φxxA|C<BC*
27 22 2 sylan2 φxxA|C<BB*
28 26 27 xrltnled φxxA|C<BC<B¬BC
29 25 28 mpbid φxxA|C<B¬BC
30 29 intnand φxxA|C<B¬xABC
31 30 12 sylnibr φxxA|C<B¬xxA|BC
32 23 31 eldifd φxxA|C<BxAxA|BC
33 21 32 impbida φxAxA|BCxxA|C<B
34 1 6 7 33 eqrd φAxA|BC=xA|C<B