Metamath Proof Explorer


Theorem prjspnval2

Description: Value of the n-dimensional projective space function, expanded. (Contributed by Steven Nguyen, 15-Jul-2023)

Ref Expression
Hypotheses prjspnval2.e ˙ = x y | x B y B l S x = l · ˙ y
prjspnval2.w W = K freeLMod 0 N
prjspnval2.b B = Base W 0 W
prjspnval2.s S = Base K
prjspnval2.x · ˙ = W
Assertion prjspnval2 N 0 K DivRing N ℙ𝕣𝕠𝕛 n K = B / ˙

Proof

Step Hyp Ref Expression
1 prjspnval2.e ˙ = x y | x B y B l S x = l · ˙ y
2 prjspnval2.w W = K freeLMod 0 N
3 prjspnval2.b B = Base W 0 W
4 prjspnval2.s S = Base K
5 prjspnval2.x · ˙ = W
6 prjspnval N 0 K DivRing N ℙ𝕣𝕠𝕛 n K = ℙ𝕣𝕠𝕛 K freeLMod 0 N
7 simpr N 0 K DivRing K DivRing
8 ovexd N 0 K DivRing 0 N V
9 2 frlmlvec K DivRing 0 N V W LVec
10 7 8 9 syl2anc N 0 K DivRing W LVec
11 eqid Scalar W = Scalar W
12 eqid Base Scalar W = Base Scalar W
13 3 5 11 12 prjspval W LVec ℙ𝕣𝕠𝕛 W = B / x y | x B y B l Base Scalar W x = l · ˙ y
14 10 13 syl N 0 K DivRing ℙ𝕣𝕠𝕛 W = B / x y | x B y B l Base Scalar W x = l · ˙ y
15 2 frlmsca K DivRing 0 N V K = Scalar W
16 7 8 15 syl2anc N 0 K DivRing K = Scalar W
17 16 fveq2d N 0 K DivRing Base K = Base Scalar W
18 4 17 syl5req N 0 K DivRing Base Scalar W = S
19 18 rexeqdv N 0 K DivRing l Base Scalar W x = l · ˙ y l S x = l · ˙ y
20 19 anbi2d N 0 K DivRing x B y B l Base Scalar W x = l · ˙ y x B y B l S x = l · ˙ y
21 20 opabbidv N 0 K DivRing x y | x B y B l Base Scalar W x = l · ˙ y = x y | x B y B l S x = l · ˙ y
22 21 qseq2d N 0 K DivRing B / x y | x B y B l Base Scalar W x = l · ˙ y = B / x y | x B y B l S x = l · ˙ y
23 14 22 eqtrd N 0 K DivRing ℙ𝕣𝕠𝕛 W = B / x y | x B y B l S x = l · ˙ y
24 2 eqcomi K freeLMod 0 N = W
25 24 fveq2i ℙ𝕣𝕠𝕛 K freeLMod 0 N = ℙ𝕣𝕠𝕛 W
26 1 qseq2i B / ˙ = B / x y | x B y B l S x = l · ˙ y
27 23 25 26 3eqtr4g N 0 K DivRing ℙ𝕣𝕠𝕛 K freeLMod 0 N = B / ˙
28 6 27 eqtrd N 0 K DivRing N ℙ𝕣𝕠𝕛 n K = B / ˙