Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prmlem1.n | |
|
prmlem1.gt | |
||
prmlem1.2 | |
||
prmlem1.3 | |
||
prmlem1a.x | |
||
Assertion | prmlem1a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmlem1.n | |
|
2 | prmlem1.gt | |
|
3 | prmlem1.2 | |
|
4 | prmlem1.3 | |
|
5 | prmlem1a.x | |
|
6 | eluz2b2 | |
|
7 | 1 2 6 | mpbir2an | |
8 | breq1 | |
|
9 | 8 | notbid | |
10 | 9 | imbi2d | |
11 | prmnn | |
|
12 | 11 | adantr | |
13 | eldifsn | |
|
14 | n2dvds1 | |
|
15 | 4 | a1i | |
16 | 3p2e5 | |
|
17 | 5 15 16 | prmlem0 | |
18 | 1nprm | |
|
19 | 18 | pm2.21i | |
20 | 1p2e3 | |
|
21 | 17 19 20 | prmlem0 | |
22 | 14 21 | mpan | |
23 | nnuz | |
|
24 | 22 23 | eleq2s | |
25 | 24 | expd | |
26 | 13 25 | biimtrrid | |
27 | 12 26 | mpcom | |
28 | 3 | 2a1i | |
29 | 10 27 28 | pm2.61ne | |
30 | 29 | rgen | |
31 | isprm5 | |
|
32 | 7 30 31 | mpbir2an | |