Metamath Proof Explorer


Theorem prmlem1a

Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses prmlem1.n N
prmlem1.gt 1<N
prmlem1.2 ¬2N
prmlem1.3 ¬3N
prmlem1a.x ¬25x5x2x2N¬xN
Assertion prmlem1a N

Proof

Step Hyp Ref Expression
1 prmlem1.n N
2 prmlem1.gt 1<N
3 prmlem1.2 ¬2N
4 prmlem1.3 ¬3N
5 prmlem1a.x ¬25x5x2x2N¬xN
6 eluz2b2 N2N1<N
7 1 2 6 mpbir2an N2
8 breq1 x=2xN2N
9 8 notbid x=2¬xN¬2N
10 9 imbi2d x=2x2N¬xNx2N¬2N
11 prmnn xx
12 11 adantr xx2x
13 eldifsn x2xx2
14 n2dvds1 ¬21
15 4 a1i 3¬3N
16 3p2e5 3+2=5
17 5 15 16 prmlem0 ¬23x3x2x2N¬xN
18 1nprm ¬1
19 18 pm2.21i 1¬1N
20 1p2e3 1+2=3
21 17 19 20 prmlem0 ¬21x1x2x2N¬xN
22 14 21 mpan x1x2x2N¬xN
23 nnuz =1
24 22 23 eleq2s xx2x2N¬xN
25 24 expd xx2x2N¬xN
26 13 25 biimtrrid xxx2x2N¬xN
27 12 26 mpcom xx2x2N¬xN
28 3 2a1i xx2N¬2N
29 10 27 28 pm2.61ne xx2N¬xN
30 29 rgen xx2N¬xN
31 isprm5 NN2xx2N¬xN
32 7 30 31 mpbir2an N