Metamath Proof Explorer


Theorem probdsb

Description: The probability of the complement of a set. That is, the probability that the event A does not occur. (Contributed by Thierry Arnoux, 15-Dec-2016)

Ref Expression
Assertion probdsb PProbAdomPPdomPA=1PA

Proof

Step Hyp Ref Expression
1 simpl PProbAdomPPProb
2 1 unveldomd PProbAdomPdomPdomP
3 simpr PProbAdomPAdomP
4 probdif PProbdomPdomPAdomPPdomPA=PdomPPdomPA
5 1 2 3 4 syl3anc PProbAdomPPdomPA=PdomPPdomPA
6 probtot PProbPdomP=1
7 elssuni AdomPAdomP
8 sseqin2 AdomPdomPA=A
9 7 8 sylib AdomPdomPA=A
10 9 fveq2d AdomPPdomPA=PA
11 6 10 oveqan12d PProbAdomPPdomPPdomPA=1PA
12 5 11 eqtrd PProbAdomPPdomPA=1PA