Metamath Proof Explorer


Theorem prodsplit

Description: Product split into two factors, original by Steven Nguyen. (Contributed by metakunt, 21-Apr-2024)

Ref Expression
Hypotheses prodsplit.1 φM
prodsplit.2 φN
prodsplit.3 φMN
prodsplit.4 φK0
prodsplit.5 φkMN+KA
Assertion prodsplit φk=MN+KA=k=MNAk=N+1N+KA

Proof

Step Hyp Ref Expression
1 prodsplit.1 φM
2 prodsplit.2 φN
3 prodsplit.3 φMN
4 prodsplit.4 φK0
5 prodsplit.5 φkMN+KA
6 2 zred φN
7 6 ltp1d φN<N+1
8 fzdisj N<N+1MNN+1N+K=
9 7 8 syl φMNN+1N+K=
10 4 nn0zd φK
11 2 10 zaddcld φN+K
12 nn0addge1 NK0NN+K
13 6 4 12 syl2anc φNN+K
14 1 11 2 3 13 elfzd φNMN+K
15 fzsplit NMN+KMN+K=MNN+1N+K
16 14 15 syl φMN+K=MNN+1N+K
17 fzfid φMN+KFin
18 9 16 17 5 fprodsplit φk=MN+KA=k=MNAk=N+1N+KA