Metamath Proof Explorer


Theorem prsrlem1

Description: Decomposing signed reals into positive reals. Lemma for addsrpr and mulsrpr . (Contributed by Jim Kingdon, 30-Dec-2019)

Ref Expression
Assertion prsrlem1 A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹w𝑷v𝑷s𝑷f𝑷u𝑷t𝑷g𝑷h𝑷w+𝑷f=v+𝑷su+𝑷h=t+𝑷g

Proof

Step Hyp Ref Expression
1 enrer ~𝑹Er𝑷×𝑷
2 erdm ~𝑹Er𝑷×𝑷dom~𝑹=𝑷×𝑷
3 1 2 ax-mp dom~𝑹=𝑷×𝑷
4 simprll A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹A=wv~𝑹
5 simpll A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹A𝑷×𝑷/~𝑹
6 4 5 eqeltrrd A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹wv~𝑹𝑷×𝑷/~𝑹
7 ecelqsdm dom~𝑹=𝑷×𝑷wv~𝑹𝑷×𝑷/~𝑹wv𝑷×𝑷
8 3 6 7 sylancr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹wv𝑷×𝑷
9 opelxp wv𝑷×𝑷w𝑷v𝑷
10 8 9 sylib A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹w𝑷v𝑷
11 simprrl A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹A=sf~𝑹
12 11 5 eqeltrrd A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹sf~𝑹𝑷×𝑷/~𝑹
13 ecelqsdm dom~𝑹=𝑷×𝑷sf~𝑹𝑷×𝑷/~𝑹sf𝑷×𝑷
14 3 12 13 sylancr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹sf𝑷×𝑷
15 opelxp sf𝑷×𝑷s𝑷f𝑷
16 14 15 sylib A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹s𝑷f𝑷
17 10 16 jca A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹w𝑷v𝑷s𝑷f𝑷
18 simprlr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹B=ut~𝑹
19 simplr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹B𝑷×𝑷/~𝑹
20 18 19 eqeltrrd A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹ut~𝑹𝑷×𝑷/~𝑹
21 ecelqsdm dom~𝑹=𝑷×𝑷ut~𝑹𝑷×𝑷/~𝑹ut𝑷×𝑷
22 3 20 21 sylancr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹ut𝑷×𝑷
23 opelxp ut𝑷×𝑷u𝑷t𝑷
24 22 23 sylib A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹u𝑷t𝑷
25 simprrr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹B=gh~𝑹
26 25 19 eqeltrrd A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹gh~𝑹𝑷×𝑷/~𝑹
27 ecelqsdm dom~𝑹=𝑷×𝑷gh~𝑹𝑷×𝑷/~𝑹gh𝑷×𝑷
28 3 26 27 sylancr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹gh𝑷×𝑷
29 opelxp gh𝑷×𝑷g𝑷h𝑷
30 28 29 sylib A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹g𝑷h𝑷
31 24 30 jca A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹u𝑷t𝑷g𝑷h𝑷
32 4 11 eqtr3d A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹wv~𝑹=sf~𝑹
33 1 a1i A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹~𝑹Er𝑷×𝑷
34 33 8 erth A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹wv~𝑹sfwv~𝑹=sf~𝑹
35 32 34 mpbird A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹wv~𝑹sf
36 df-enr ~𝑹=xy|x𝑷×𝑷y𝑷×𝑷abcdx=aby=cda+𝑷d=b+𝑷c
37 36 ecopoveq w𝑷v𝑷s𝑷f𝑷wv~𝑹sfw+𝑷f=v+𝑷s
38 10 16 37 syl2anc A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹wv~𝑹sfw+𝑷f=v+𝑷s
39 35 38 mpbid A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹w+𝑷f=v+𝑷s
40 18 25 eqtr3d A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹ut~𝑹=gh~𝑹
41 33 22 erth A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹ut~𝑹ghut~𝑹=gh~𝑹
42 40 41 mpbird A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹ut~𝑹gh
43 36 ecopoveq u𝑷t𝑷g𝑷h𝑷ut~𝑹ghu+𝑷h=t+𝑷g
44 24 30 43 syl2anc A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹ut~𝑹ghu+𝑷h=t+𝑷g
45 42 44 mpbid A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹u+𝑷h=t+𝑷g
46 39 45 jca A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹w+𝑷f=v+𝑷su+𝑷h=t+𝑷g
47 17 31 46 jca31 A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹w𝑷v𝑷s𝑷f𝑷u𝑷t𝑷g𝑷h𝑷w+𝑷f=v+𝑷su+𝑷h=t+𝑷g