Metamath Proof Explorer


Theorem prstchom2ALT

Description: Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc . See prstchom2 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φKProset
prstchom.l φ˙=C
prstchom.e φH=HomC
Assertion prstchom2ALT φX˙Y∃!ffXHY

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φKProset
3 prstchom.l φ˙=C
4 prstchom.e φH=HomC
5 ovex XHYV
6 1 2 3 prstchomval φ˙×1𝑜=HomC
7 4 6 eqtr4d φH=˙×1𝑜
8 1oex 1𝑜V
9 8 a1i φ1𝑜V
10 1n0 1𝑜
11 10 a1i φ1𝑜
12 7 9 11 fvconstr φX˙YXHY=1𝑜
13 12 biimpa φX˙YXHY=1𝑜
14 eqeng XHYVXHY=1𝑜XHY1𝑜
15 5 13 14 mpsyl φX˙YXHY1𝑜
16 euen1b XHY1𝑜∃!ffXHY
17 15 16 sylib φX˙Y∃!ffXHY
18 euex ∃!ffXHYffXHY
19 n0 XHYffXHY
20 18 19 sylibr ∃!ffXHYXHY
21 7 9 11 fvconstrn0 φX˙YXHY
22 21 biimpar φXHYX˙Y
23 20 22 sylan2 φ∃!ffXHYX˙Y
24 17 23 impbida φX˙Y∃!ffXHY